- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Lake Mead (5)
-
North America
-
Basin and Range Province
-
Great Basin (1)
-
-
-
United States
-
Arizona
-
Mohave County Arizona (3)
-
-
Colorado Plateau (1)
-
Great Basin (1)
-
Nevada
-
Clark County Nevada (8)
-
Lake Mead Fault (8)
-
Las Vegas Valley (2)
-
-
-
-
elements, isotopes
-
isotope ratios (1)
-
isotopes
-
stable isotopes
-
Nd-144/Nd-143 (1)
-
Sr-87/Sr-86 (1)
-
-
-
metals
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (1)
-
-
-
lead (1)
-
rare earths
-
neodymium
-
Nd-144/Nd-143 (1)
-
-
-
-
-
geochronology methods
-
fission-track dating (1)
-
paleomagnetism (2)
-
-
geologic age
-
Cenozoic
-
Tertiary
-
Neogene
-
Miocene
-
upper Miocene (1)
-
-
Pliocene (1)
-
-
-
-
-
igneous rocks
-
igneous rocks
-
volcanic rocks
-
basalts
-
alkali basalts (1)
-
-
-
-
-
minerals
-
phosphates
-
apatite (1)
-
-
-
Primary terms
-
Cenozoic
-
Tertiary
-
Neogene
-
Miocene
-
upper Miocene (1)
-
-
Pliocene (1)
-
-
-
-
crust (2)
-
faults (8)
-
geochemistry (1)
-
geochronology (1)
-
igneous rocks
-
volcanic rocks
-
basalts
-
alkali basalts (1)
-
-
-
-
isotopes
-
stable isotopes
-
Nd-144/Nd-143 (1)
-
Sr-87/Sr-86 (1)
-
-
-
lava (1)
-
mantle (1)
-
metals
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (1)
-
-
-
lead (1)
-
rare earths
-
neodymium
-
Nd-144/Nd-143 (1)
-
-
-
-
North America
-
Basin and Range Province
-
Great Basin (1)
-
-
-
paleomagnetism (2)
-
sedimentation (1)
-
structural analysis (1)
-
structural geology (3)
-
tectonics
-
neotectonics (3)
-
-
United States
-
Arizona
-
Mohave County Arizona (3)
-
-
Colorado Plateau (1)
-
Great Basin (1)
-
Nevada
-
Clark County Nevada (8)
-
Lake Mead Fault (8)
-
Las Vegas Valley (2)
-
-
-
Lake Mead Fault
Geometry and kinematics of the eastern Lake Mead fault system in the Virgin Mountains, Nevada and Arizona
The Lake Mead fault system is a northeast-striking, 130-km-long zone of left-slip in the southeast Great Basin, active from before 16 Ma to Quaternary time. The northeast end of the Lake Mead fault system in the Virgin Mountains of southeast Nevada and northwest Arizona forms a partitioned strain field comprising kinematically linked northeast-striking left-lateral faults, north-striking normal faults, and northwest-striking right-lateral faults. Major faults bound large structural blocks whose internal strain reflects their position within a left step-over of the left-lateral faults. Two north-striking large-displacement normal faults, the Lakeside Mine segment of the South Virgin–White Hills detachment fault and the Piedmont fault, intersect the left step-over from the southwest and northeast, respectively. The left step-over in the Lake Mead fault system therefore corresponds to a right-step in the regional normal fault system. Within the left step-over, displacement transfer between the left-lateral faults and linked normal faults occurs near their junctions, where the left-lateral faults become oblique and normal fault displacement decreases away from the junction. Southward from the center of the step-over in the Virgin Mountains, down-to-the-west normal faults splay northward from left-lateral faults, whereas north and east of the center, down-to-the-east normal faults splay southward from left-lateral faults. Minimum slip is thus in the central part of the left step-over, between east-directed slip to the north and west-directed slip to the south. Attenuation faults parallel or subparallel to bedding cut Lower Paleozoic rocks and are inferred to be early structures that accommodated footwall uplift during the initial stages of extension. Fault-slip data indicate oblique extensional strain within the left step-over in the South Virgin Mountains, manifested as east-west extension; shortening is partitioned between vertical for extension-dominated structural blocks and south-directed for strike-slip faults. Strike-slip faults are oblique to the extension direction due to structural inheritance from NE-striking fabrics in Proterozoic crystalline basement rocks. We hypothesize that (1) during early phases of deformation oblique extension was partitioned to form east-west–extended domains bounded by left-lateral faults of the Lake Mead fault system, from ca. 16 to 14 Ma. (2) Beginning ca. 13 Ma, increased south-directed shortening impinged on the Virgin Mountains and forced uplift, faulting, and overturning along the north and west side of the Virgin Mountains. (3) By ca. 10 Ma, initiation of the younger Hen Spring to Hamblin Bay fault segment of the Lake Mead fault system accommodated westward tectonic escape, and the focus of south-directed shortening transferred to the western Lake Mead region. The shift from early partitioned oblique extension to south-directed shortening may have resulted from initiation of right-lateral shear of the eastern Walker Lane to the west coupled with left-lateral shear along the eastern margin of the Great Basin.
Secondary normal faulting in the Lake Mead fault system and implications for regional fault mechanics
The hypothesized presence of a detachment underlying the Lake Mead region has created a dichotomy in the interpretations of the roles of strike-slip faults of the Lake Mead fault system in accommodating regional deformation. Our detailed field mapping reveals a previously unnamed left-lateral strike-slip segment of the Lake Mead fault system and a dense cluster of dominantly west-dipping and related normal faults located near Pinto Ridge. We suggest that the strike-slip fault that we refer to as the Pinto Ridge fault: (1) was kinematically related to the Bitter Spring Valley fault; (2) was responsible for the creation of the normal fault cluster at Pinto Ridge; and (3) utilized these normal faults as linking structures between separate strike-slip fault segments to create a longer, through-going fault. Results from numerical models demonstrate that the observed location and curving strike patterns of the normal fault cluster are consistent with the faults having formed as secondary structures as the result of the perturbed stress field around the slipping Pinto Ridge fault, regardless of whether or not the Pinto Ridge fault merges into a regional detachment at depth. Calculations of mechanical efficiency of various normal fault geometries within extending terranes suggest that a preferred west dip of normal faults likely reflects a west-dipping anisotropy at depth, such as a detachment. The apparent terminations of numerous strike-slip faults of the Lake Mead fault system into west-dipping normal faults suggest that a west-dipping detachment may be regionally coherent.
New studies of selected basins in the Miocene extensional belt of the northern Lake Mead domain, southern Nevada, suggest refinements on previous models for the early extensional history of the region. Critical data come from (1) the Longwell Ridges area, west of Overton Arm and within the Lake Mead fault system; (2) the Salt Spring Wash Basin, in the hanging wall of the South Virgin Mountains–White Hills detachment fault; and (3) previously studied subbasins of the South Virgin Mountains in the Gold Butte step-over region. Our model focuses on the early history of extension and involves analysis of the lower Horse Spring Formation and correlative strata. The basins and fault patterns suggest two stages of basin development related to two distinct faulting episodes, an early period of detachment faulting, followed by a switch to faulting mainly along the Lake Mead transtensional fault system while detachment faulting waned. Apatite fission-track ages suggest that the footwall block of the detachment fault began cooling at 18–17 Ma. The 18–17 Ma time period appears to be the age of the upper limestone of the Rainbow Gardens Member of the Horse Spring Formation, which is interpreted to be a pre-extensional unit deposited only north of Gold Butte block in the Gold Butte step-over basin, where facies patterns and slow rates of sedimentation make faulting uncertain. The first definite basin stage occurred ca. 16.5–15.5 Ma, during which there was slow to moderate faulting and basin subsidence in a contiguous basin along the South Virgin Mountains–White Hills detachment fault and in the Gold Butte step-over basin; the step-over basin had complex fluvial and lacustrine facies and was synchronous with landslides and debris flows in the basin in the hanging wall of the detachment fault. At ca. 15.5–14.5 Ma, there was a dramatic increase in sedimentation rate related to formation or increased activity on the Gold Butte fault, a change from lacustrine to widespread fluvial, playa, and local landslide facies in the step-over basin, and the peak of exhumation and faulting rates on the detachment fault. The simple early Gold Butte step-over basin broke up into numerous subbasins at ca. 15.5–14.5 Ma as initial faults of the Lake Mead fault system formed. From 14.5 to 14.0 Ma, a major change occurred from dominantly detachment faulting to dominantly transtensional (strike-slip + normal) faulting in the Lake Mead fault system as detachment faulting waned. At this time, the Lake Mead fault system began to propagate to the west, and activity on faults and in subbasins north of Gold Butte slowed or ceased, accompanied by major progradation of alluvial conglomerates over the step-over basin. The geometry of the South Virgin Mountains–White Hills detachment fault that dominated the early Lake Mead extension history fundamentally controlled patterns of faulting and magmatism throughout the rest of the extensional history, even as the detachment faulting itself slowed from 14 to 11 Ma, when it ceased to be active. In a regional view, the detachment faulting in eastern Lake Mead is linked to and forms the northern end of the ca. 20–11 Ma northern Colorado River extension corridor. Similar to the rest of the corridor, faulting and exhumation peaked at 15 Ma, but at the north end of the corridor in eastern Lake Mead, detachment faulting changed rapidly to dominantly transtensional left-lateral faulting of the Lake Mead fault system. Eastern Lake Mead shows evidence for a spatial boundary between the southern and central Basin and Range that is best thought of as a northeast-southwest–trending feature located on numerous older tectonic boundaries. The area also records a temporal change from detachment to transtensional faulting characteristic of the central Basin and Range after 15 Ma.