- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Asia
-
Central Asia
-
Pamirs (3)
-
-
Far East
-
Burma (1)
-
China
-
Tarim Platform (1)
-
Xinjiang China
-
Tarim Basin (1)
-
-
Xizang China
-
Gangdese Belt (1)
-
Lhasa Block (2)
-
-
-
-
Ganges River (1)
-
Himalayas
-
Lesser Himalayas (1)
-
Nanga Parbat (5)
-
-
Hindu Kush (3)
-
Indian Peninsula
-
Afghanistan (1)
-
India (5)
-
Indus Valley (1)
-
Jammu and Kashmir
-
Ladakh (11)
-
Nanga Parbat (5)
-
-
Kohistan (49)
-
Nepal (1)
-
Pakistan
-
North-West Frontier Pakistan
-
Swat Pakistan (1)
-
-
Punjab Pakistan
-
Salt Range (2)
-
-
-
Potwar Plateau (2)
-
-
Indus River (2)
-
Indus-Yarlung Zangbo suture zone (6)
-
Karakoram (10)
-
Main Central Thrust (2)
-
Qiangtang Terrane (1)
-
Siwalik Range (1)
-
Tibetan Plateau (1)
-
-
Australasia
-
New Zealand
-
Southland New Zealand
-
Fiordland (1)
-
-
-
-
Canada
-
Western Canada
-
British Columbia (1)
-
-
-
Coast Ranges (1)
-
Eurasia (1)
-
Europe
-
Central Europe
-
Bohemian Massif (1)
-
Germany
-
Saxony Germany (1)
-
-
Switzerland (1)
-
-
Pyrenees (1)
-
Southern Europe
-
Iberian Peninsula
-
Spain
-
Betic Cordillera (1)
-
-
-
Italy
-
Calabria Italy (1)
-
Ivrea-Verbano Zone (2)
-
-
-
-
Indian Ocean
-
Arabian Sea
-
Indus Fan (1)
-
-
-
International Ocean Discovery Program
-
Expedition 355
-
IODP Site U1456 (1)
-
IODP Site U1457 (1)
-
-
-
North America
-
Appalachians (1)
-
North American Cordillera (1)
-
-
Ruby Mountains (1)
-
South America
-
Brazil
-
Sao Paulo Brazil (1)
-
-
-
Southern Alps (1)
-
United States
-
Alaska
-
Talkeetna Mountains (1)
-
-
California
-
Sierra Nevada Batholith (1)
-
-
Delaware (1)
-
Nevada
-
Elko County Nevada
-
East Humboldt Range (1)
-
-
-
Pennsylvania (1)
-
-
-
commodities
-
gems (1)
-
-
elements, isotopes
-
boron (1)
-
carbon
-
C-13/C-12 (1)
-
-
chemical ratios (1)
-
isotope ratios (10)
-
isotopes
-
radioactive isotopes
-
Pb-206/Pb-204 (6)
-
Pb-207/Pb-204 (3)
-
Pb-208/Pb-204 (4)
-
Rb-87/Sr-86 (1)
-
-
stable isotopes
-
C-13/C-12 (1)
-
Hf-177/Hf-176 (1)
-
Nd-144/Nd-143 (5)
-
O-18/O-16 (1)
-
Pb-206/Pb-204 (6)
-
Pb-207/Pb-204 (3)
-
Pb-208/Pb-204 (4)
-
Rb-87/Sr-86 (1)
-
Sr-87/Sr-86 (6)
-
-
-
Lu/Hf (1)
-
metals
-
alkali metals
-
rubidium
-
Rb-87/Sr-86 (1)
-
-
-
alkaline earth metals
-
strontium
-
Rb-87/Sr-86 (1)
-
Sr-87/Sr-86 (6)
-
-
-
chromium (1)
-
hafnium
-
Hf-177/Hf-176 (1)
-
-
iron
-
ferric iron (1)
-
-
lead
-
Pb-206/Pb-204 (6)
-
Pb-207/Pb-204 (3)
-
Pb-208/Pb-204 (4)
-
-
rare earths
-
neodymium
-
Nd-144/Nd-143 (5)
-
-
samarium (1)
-
-
-
noble gases
-
argon (1)
-
-
oxygen
-
O-18/O-16 (1)
-
-
-
geochronology methods
-
Ar/Ar (3)
-
fission-track dating (1)
-
Lu/Hf (1)
-
paleomagnetism (1)
-
Pb/Pb (1)
-
Rb/Sr (1)
-
Sm/Nd (2)
-
thermochronology (2)
-
U/Pb (10)
-
U/Th/Pb (2)
-
-
geologic age
-
Cenozoic
-
Quaternary (1)
-
Siwalik System (2)
-
Tertiary
-
Neogene
-
Miocene
-
middle Miocene (1)
-
upper Miocene
-
Chinji Formation (2)
-
-
-
-
Paleogene
-
Eocene (2)
-
Paleocene
-
lower Paleocene (1)
-
-
-
-
upper Cenozoic (1)
-
-
Mesozoic
-
Bela Ophiolites (1)
-
Cretaceous
-
Middle Cretaceous (1)
-
Upper Cretaceous (3)
-
-
Jurassic
-
Middle Jurassic (1)
-
Upper Jurassic (1)
-
-
Triassic (1)
-
-
Paleozoic
-
Cambrian (2)
-
lower Paleozoic
-
Wilmington Complex (1)
-
-
Ordovician (2)
-
-
Phanerozoic (2)
-
Precambrian
-
upper Precambrian
-
Proterozoic (2)
-
-
-
-
igneous rocks
-
igneous rocks
-
plutonic rocks
-
anorthosite (1)
-
diorites
-
quartz diorites (1)
-
tonalite (1)
-
trondhjemite (1)
-
-
gabbros
-
norite (1)
-
-
granites
-
A-type granites (1)
-
leucogranite (4)
-
-
granodiorites (1)
-
pegmatite (1)
-
ultramafics
-
chromitite (1)
-
peridotites
-
dunite (2)
-
-
pyroxenite (2)
-
-
-
volcanic rocks
-
andesites
-
boninite (2)
-
-
basalts (1)
-
-
-
ophiolite (3)
-
wehrlite (1)
-
-
metamorphic rocks
-
metamorphic rocks
-
amphibolites (4)
-
eclogite (2)
-
gneisses
-
orthogneiss (1)
-
-
granulites (5)
-
jadeitite (1)
-
marbles (1)
-
metaigneous rocks
-
metagranite (1)
-
serpentinite (1)
-
-
metaplutonic rocks (1)
-
metasedimentary rocks (3)
-
metasomatic rocks
-
serpentinite (1)
-
-
metavolcanic rocks (2)
-
migmatites (1)
-
mylonites (2)
-
schists (3)
-
-
ophiolite (3)
-
-
minerals
-
carbonates
-
calcite (1)
-
-
minerals (2)
-
oxides
-
chromite (1)
-
magnetite (1)
-
rutile (1)
-
spinel (1)
-
-
phosphates
-
apatite (3)
-
monazite (3)
-
-
silicates
-
chain silicates
-
amphibole group
-
clinoamphibole
-
hornblende (2)
-
-
-
pyroxene group
-
clinopyroxene (1)
-
-
-
framework silicates
-
feldspar group
-
plagioclase
-
anorthite (1)
-
-
-
silica minerals
-
coesite (1)
-
-
-
orthosilicates
-
nesosilicates
-
garnet group (3)
-
olivine group
-
olivine (1)
-
-
sillimanite (1)
-
staurolite (1)
-
titanite group
-
titanite (1)
-
-
zircon group
-
zircon (8)
-
-
-
-
sheet silicates
-
mica group
-
biotite (1)
-
muscovite (1)
-
-
serpentine group
-
chrysotile (1)
-
-
-
-
wehrlite (1)
-
-
Primary terms
-
absolute age (12)
-
Asia
-
Central Asia
-
Pamirs (3)
-
-
Far East
-
Burma (1)
-
China
-
Tarim Platform (1)
-
Xinjiang China
-
Tarim Basin (1)
-
-
Xizang China
-
Gangdese Belt (1)
-
Lhasa Block (2)
-
-
-
-
Ganges River (1)
-
Himalayas
-
Lesser Himalayas (1)
-
Nanga Parbat (5)
-
-
Hindu Kush (3)
-
Indian Peninsula
-
Afghanistan (1)
-
India (5)
-
Indus Valley (1)
-
Jammu and Kashmir
-
Ladakh (11)
-
Nanga Parbat (5)
-
-
Kohistan (49)
-
Nepal (1)
-
Pakistan
-
North-West Frontier Pakistan
-
Swat Pakistan (1)
-
-
Punjab Pakistan
-
Salt Range (2)
-
-
-
Potwar Plateau (2)
-
-
Indus River (2)
-
Indus-Yarlung Zangbo suture zone (6)
-
Karakoram (10)
-
Main Central Thrust (2)
-
Qiangtang Terrane (1)
-
Siwalik Range (1)
-
Tibetan Plateau (1)
-
-
Australasia
-
New Zealand
-
Southland New Zealand
-
Fiordland (1)
-
-
-
-
boron (1)
-
Canada
-
Western Canada
-
British Columbia (1)
-
-
-
carbon
-
C-13/C-12 (1)
-
-
Cenozoic
-
Quaternary (1)
-
Siwalik System (2)
-
Tertiary
-
Neogene
-
Miocene
-
middle Miocene (1)
-
upper Miocene
-
Chinji Formation (2)
-
-
-
-
Paleogene
-
Eocene (2)
-
Paleocene
-
lower Paleocene (1)
-
-
-
-
upper Cenozoic (1)
-
-
continental drift (1)
-
crust (15)
-
crystal chemistry (1)
-
deformation (8)
-
earthquakes (2)
-
Eurasia (1)
-
Europe
-
Central Europe
-
Bohemian Massif (1)
-
Germany
-
Saxony Germany (1)
-
-
Switzerland (1)
-
-
Pyrenees (1)
-
Southern Europe
-
Iberian Peninsula
-
Spain
-
Betic Cordillera (1)
-
-
-
Italy
-
Calabria Italy (1)
-
Ivrea-Verbano Zone (2)
-
-
-
-
faults (15)
-
folds (6)
-
foliation (1)
-
gems (1)
-
geochemistry (4)
-
geochronology (1)
-
geomorphology (1)
-
geophysical methods (1)
-
igneous rocks
-
plutonic rocks
-
anorthosite (1)
-
diorites
-
quartz diorites (1)
-
tonalite (1)
-
trondhjemite (1)
-
-
gabbros
-
norite (1)
-
-
granites
-
A-type granites (1)
-
leucogranite (4)
-
-
granodiorites (1)
-
pegmatite (1)
-
ultramafics
-
chromitite (1)
-
peridotites
-
dunite (2)
-
-
pyroxenite (2)
-
-
-
volcanic rocks
-
andesites
-
boninite (2)
-
-
basalts (1)
-
-
-
inclusions (1)
-
Indian Ocean
-
Arabian Sea
-
Indus Fan (1)
-
-
-
intrusions (9)
-
isostasy (1)
-
isotopes
-
radioactive isotopes
-
Pb-206/Pb-204 (6)
-
Pb-207/Pb-204 (3)
-
Pb-208/Pb-204 (4)
-
Rb-87/Sr-86 (1)
-
-
stable isotopes
-
C-13/C-12 (1)
-
Hf-177/Hf-176 (1)
-
Nd-144/Nd-143 (5)
-
O-18/O-16 (1)
-
Pb-206/Pb-204 (6)
-
Pb-207/Pb-204 (3)
-
Pb-208/Pb-204 (4)
-
Rb-87/Sr-86 (1)
-
Sr-87/Sr-86 (6)
-
-
-
lava (1)
-
lineation (4)
-
magmas (10)
-
mantle (9)
-
maps (1)
-
Mesozoic
-
Bela Ophiolites (1)
-
Cretaceous
-
Middle Cretaceous (1)
-
Upper Cretaceous (3)
-
-
Jurassic
-
Middle Jurassic (1)
-
Upper Jurassic (1)
-
-
Triassic (1)
-
-
metals
-
alkali metals
-
rubidium
-
Rb-87/Sr-86 (1)
-
-
-
alkaline earth metals
-
strontium
-
Rb-87/Sr-86 (1)
-
Sr-87/Sr-86 (6)
-
-
-
chromium (1)
-
hafnium
-
Hf-177/Hf-176 (1)
-
-
iron
-
ferric iron (1)
-
-
lead
-
Pb-206/Pb-204 (6)
-
Pb-207/Pb-204 (3)
-
Pb-208/Pb-204 (4)
-
-
rare earths
-
neodymium
-
Nd-144/Nd-143 (5)
-
-
samarium (1)
-
-
-
metamorphic rocks
-
amphibolites (4)
-
eclogite (2)
-
gneisses
-
orthogneiss (1)
-
-
granulites (5)
-
jadeitite (1)
-
marbles (1)
-
metaigneous rocks
-
metagranite (1)
-
serpentinite (1)
-
-
metaplutonic rocks (1)
-
metasedimentary rocks (3)
-
metasomatic rocks
-
serpentinite (1)
-
-
metavolcanic rocks (2)
-
migmatites (1)
-
mylonites (2)
-
schists (3)
-
-
metamorphism (15)
-
metasomatism (1)
-
mineralogy (1)
-
minerals (2)
-
Mohorovicic discontinuity (2)
-
noble gases
-
argon (1)
-
-
North America
-
Appalachians (1)
-
North American Cordillera (1)
-
-
orogeny (5)
-
oxygen
-
O-18/O-16 (1)
-
-
paleogeography (4)
-
paleomagnetism (1)
-
Paleozoic
-
Cambrian (2)
-
lower Paleozoic
-
Wilmington Complex (1)
-
-
Ordovician (2)
-
-
petrology (5)
-
Phanerozoic (2)
-
phase equilibria (4)
-
plate tectonics (16)
-
Precambrian
-
upper Precambrian
-
Proterozoic (2)
-
-
-
remote sensing (1)
-
sedimentary rocks
-
clastic rocks
-
red beds (1)
-
sandstone (1)
-
-
-
sedimentary structures
-
graded bedding (2)
-
planar bedding structures
-
imbrication (2)
-
-
turbidity current structures (2)
-
-
sedimentation (1)
-
sediments
-
clastic sediments
-
sand (1)
-
-
-
South America
-
Brazil
-
Sao Paulo Brazil (1)
-
-
-
stratigraphy (2)
-
structural analysis (4)
-
structural geology (8)
-
tectonics
-
neotectonics (2)
-
-
tectonophysics (2)
-
United States
-
Alaska
-
Talkeetna Mountains (1)
-
-
California
-
Sierra Nevada Batholith (1)
-
-
Delaware (1)
-
Nevada
-
Elko County Nevada
-
East Humboldt Range (1)
-
-
-
Pennsylvania (1)
-
-
weathering (1)
-
-
rock formations
-
Semail Ophiolite (1)
-
-
sedimentary rocks
-
sedimentary rocks
-
clastic rocks
-
red beds (1)
-
sandstone (1)
-
-
-
-
sedimentary structures
-
channels (1)
-
sedimentary structures
-
graded bedding (2)
-
planar bedding structures
-
imbrication (2)
-
-
turbidity current structures (2)
-
-
-
sediments
-
sediments
-
clastic sediments
-
sand (1)
-
-
-
Kohistan
Formation of lower arc crust by magmatic underplating revealed by high-precision geochronology
Metamorphic and intrusive history of the Hindu Raj region, northern Pakistan
The Burmese Jade Mines belt: origins of jadeitites, serpentinites, and ophiolitic peridotites and gabbros
Amphibole fractionation and its potential redox effect on arc crust: Evidence from the Kohistan arc cumulates
Petrological and geochemical characterization of the arc-related Suru–Thasgam ophiolitic slice along the Indus Suture Zone, Ladakh Himalaya
The plutonic crust of Kohistan and volcanic crust of Kohistan–Ladakh, north Pakistan/India: lessons learned for deep and shallow arc processes
Abstract The Kohistan–Ladakh terrane, northern Pakistan/India, offers a unique insight into whole-arc processes. This research review presents summaries of fundamental crustal genesis and evolution models. Earlier work focused on arc sequence definition. Later work focused on holistic petrogenesis. A new model emerges of an unusually thick ( c. 55 km) arc with a c. 30 km-thick batholith. Volatile-rich, hornblende ± garnet ± sediment assimilation-controlled magmatism is predominant. The thick batholith has a complementary mafic–ultramafic residue. Kohistan crustal SiO 2 contents are estimated at >56%. The new-Kohistan, silicic-crust model contrasts with previous lower SiO 2 estimates ( c. 51% SiO 2 crust) and modern arcs that imply <35 km crustal thicknesses and arc batholith thicknesses of c. 7 km. A synthetic overview of Kohistan–Ladakh volcanic rocks presents a model of an older, cleaved/deformed Cretaceous volcanic system at least 800 km across strike. The Jaglot–Chalt–Dras–Shyok volcanics exhibit predominant tholeiitic-calc-alkaline signatures, with a range of arc-related facies/tectonic settings. A younger, post-collisional, Tertiary silicic volcanic system (the Shamran–Dir–Dras-2–Khardung volcanics) lie unconformably upon Cretaceous basement, and erupted within an intra-continental tectonic setting. Kohistan–Ladakh tectonic model controversies remain. In essence, isotope-focused researchers prefer later (Tertiary) collisions, whilst structural field-geology-orientated researchers prefer an older (Cretaceous) age for the Northern/Shyok Suture.
The isotopic evolution of the Kohistan Ladakh arc from subduction initiation to continent arc collision
Abstract Magmatic arcs associated with subduction zones are the dominant active locus of continental crust formation, and evolve in space and time towards magmatic compositions comparable to that of continental crust. Accordingly, the secular evolution of magmatic arcs is crucial to the understanding of crust formation processes. In this paper we present the first comprehensive U–Pb, Hf, Nd and Sr isotopic dataset documenting c. 120 myr of magmatic evolution in the Kohistan-Ladakh paleo-island arc. We found a long-term magmatic evolution that is controlled by the overall geodynamic of the Neo-Tethys realm. Apart from the post-collisionnal melts, the intra-oceanic history of the arc shows two main episodes (150–80 Ma and 80–50 Ma) of distinct geochemical signatures involving the slab and the sub-arc mantle components that are intimately linked to the slab dynamics.
Tectonic evolution of the Himalayan syntaxes: the view from Nanga Parbat
Abstract Current tectonic understanding of the Nanga Parbat–Haramosh massif (NPHM) is reviewed, developing new models for the structure and deformation of the Indian continental crust, its thermorheological evolution, and its relationship to surface processes. Comparisons are drawn with the Namche Barwa–Gyala Peri massif (NBGPM) that cores an equivalent syntaxis at the NE termination of the Himalayan arc. Both massifs show exceptionally rapid active denudation and riverine downcutting, identified from very young cooling ages measured from various thermochronometers. They also record relicts of high-pressure metamorphic conditions that chart early tectonic burial. Initial exhumation was probably exclusively by tectonic processes but the young, and continuing emergence of these massifs reflects combined tectonic and surface processes. The feedback mechanisms implicit in aneurysm models may have been overemphasized, especially the role of synkinematic granites as agents of rheological softening and strain localization. Patterns of distributed ductile deformation exhumed within the NPHM are consistent with models of orogen-wide gravitation flow, with the syntaxes forming the lateral edges to the flow beneath the Himalayan arc.
Towards resolving the metamorphic enigma of the Indian Plate in the NW Himalaya of Pakistan
Abstract The Pakistan part of the Himalaya has major differences in tectonic evolution compared with the main Himalayan range to the east of the Nanga Parbat syntaxis. There is no equivalent of the Tethyan Himalaya sedimentary sequence south of the Indus–Tsangpo suture zone, no equivalent of the Main Central Thrust, and no Miocene metamorphism and leucogranite emplacement. The Kohistan Arc was thrust southward onto the leading edge of continental India. All rocks exposed to the south of the arc in the footwall of the Main Mantle Thrust preserve metamorphic histories. However, these do not all record Cenozoic metamorphism. Basement rocks record Paleo-Proterozoic metamorphism with no Cenozoic heating; Neo-Proterozoic through Cambrian sediments record Ordovician ages for peak kyanite and sillimanite grade metamorphism, although Ar–Ar data indicate a Cenozoic thermal imprint which did not reset the peak metamorphic assemblages. The only rocks that clearly record Cenozoic metamorphism are Upper Paleozoic through Mesozoic cover sediments. Thermobarometric data suggest burial of these rocks along a clockwise pressure–temperature path to pressure–temperature conditions of c. 10–11 kbar and c. 700°C. Resolving this enigma is challenging but implies downward heating into the Indian plate, coupled with later development of unconformity parallel shear zones that detach Upper Paleozoic–Cenozoic cover rocks from Neoproterozoic to Paleozoic basement rocks and also detach those rocks from the Paleoproterozoic basement.
Structural and metamorphic evolution of the Karakoram and Pamir following India–Kohistan–Asia collision
Abstract Following the c. 50 Ma India–Kohistan arc–Asia collision, crustal thickening uplifted the Himalaya (Indian Plate), and the Karakoram, Pamir and Tibetan Plateau (Asian Plate). Whereas surface geology of Tibet shows limited Cenozoic metamorphism and deformation, and only localized crustal melting, the Karakoram–Pamir show regional sillimanite- and kyanite-grade metamorphism, and crustal melting resulting in major granitic intrusions (Baltoro granites). U/Th–Pb dating shows that metamorphism along the Hunza Karakoram peaked at c. 83–62 and 44 Ma with intrusion of the Hunza dykes at 52–50 Ma and 35 ± 1.0 Ma, and along the Baltoro Karakoram peaked at c. 28–22 Ma, but continued until 5.4–3.5 Ma (Dassu dome). Widespread crustal melting along the Baltoro Batholith spanned 26.4–13 Ma. A series of thrust sheets and gneiss domes (metamorphic core complexes) record crustal thickening and regional metamorphism in the central and south Pamir from 37 to 20 Ma. At 20 Ma, break-off of the Indian slab caused large-scale exhumation of amphibolite-facies crust from depths of 30–55 km, and caused crustal thickening to jump to the fold-and-thrust belt at the northern edge of the Pamir. Crustal thickening, high-grade metamorphism and melting are certainly continuing at depth today in the India–Asia collision zone.