- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Africa
-
Central Africa
-
Congo Democratic Republic (1)
-
-
North Africa
-
Egypt (3)
-
-
Southern Africa
-
Barberton greenstone belt (1)
-
South Africa
-
Free State South Africa
-
Vredefort Dome (7)
-
-
-
-
West Africa
-
Ghana
-
Bosumtwi Crater (5)
-
-
Ivory Coast (2)
-
-
-
Antarctica
-
Queen Maud Land
-
Sor-Rondane Mountains (1)
-
-
-
Arctic Ocean
-
Barents Sea (1)
-
-
Arctic region
-
Greenland
-
Greenland ice sheet (1)
-
-
-
Asia
-
Arabian Peninsula
-
Yemen (1)
-
-
Central Asia
-
Kazakhstan
-
Aktyubinsk Kazakhstan
-
Zhamanshin Crater (1)
-
-
-
-
Far East
-
China
-
North China Platform (1)
-
Qinling Mountains (1)
-
-
Indochina (1)
-
Indonesia (1)
-
Vietnam
-
Dalat Vietnam (1)
-
-
-
Indian Peninsula
-
India
-
Bundelkhand (1)
-
-
-
Popigay Structure (3)
-
Sakhalin Russian Federation
-
Sakhalin (1)
-
-
Southeast Asia (1)
-
Tibetan Plateau (1)
-
-
Atlantic Ocean
-
North Atlantic
-
Faeroe-Shetland Basin (1)
-
Gulf of Mexico (4)
-
North Sea
-
Viking Graben (1)
-
-
Northeast Atlantic (1)
-
Northwest Atlantic (1)
-
-
-
Australasia
-
Australia
-
Western Australia
-
Hamersley Basin (1)
-
-
-
-
Canada
-
Arctic Archipelago (2)
-
Carswell Structure (2)
-
Eastern Canada
-
Ontario
-
Frontenac County Ontario (1)
-
Sudbury igneous complex (2)
-
Sudbury Structure (6)
-
Thunder Bay District Ontario (1)
-
-
Quebec
-
Charlevoix (1)
-
New Quebec Crater (1)
-
-
-
Nunavut
-
Devon Island (3)
-
Haughton impact structure (2)
-
-
Queen Elizabeth Islands
-
Devon Island (3)
-
-
Ungava (1)
-
Western Canada
-
Alberta (1)
-
Athabasca Basin (1)
-
Northwest Territories (1)
-
Saskatchewan (1)
-
-
-
Chesapeake Bay impact structure (19)
-
Chicxulub Crater (11)
-
Commonwealth of Independent States
-
Belarus (1)
-
Kazakhstan
-
Aktyubinsk Kazakhstan
-
Zhamanshin Crater (1)
-
-
-
Russian Federation
-
Arkhangelsk Russian Federation
-
Nenets Russian Federation (1)
-
-
Polar Urals
-
Pai-Khoi (1)
-
-
Popigay Structure (3)
-
Sakhalin Russian Federation
-
Sakhalin (1)
-
-
-
Ukraine
-
Boltyshka Depression (1)
-
-
Urals
-
Polar Urals
-
Pai-Khoi (1)
-
-
-
-
Europe
-
Arkhangelsk Russian Federation
-
Nenets Russian Federation (1)
-
-
Baltic region
-
Estonia (1)
-
-
Belarus (1)
-
Central Europe
-
Germany
-
Bavaria Germany
-
Ries Crater (17)
-
-
Steinheim Basin (1)
-
-
-
Ukraine
-
Boltyshka Depression (1)
-
-
Western Europe
-
France
-
Central Massif (2)
-
Charente France (1)
-
Rochechouart Crater (3)
-
-
Iceland (2)
-
Scandinavia
-
Finland
-
Lake Lappajarvi (1)
-
-
Norway
-
Southern Norway (1)
-
-
Sweden
-
Jamtland Sweden
-
Lockne Crater (1)
-
-
-
-
United Kingdom
-
Great Britain
-
Scotland
-
Highland region Scotland
-
Sutherland Scotland
-
Assynt (1)
-
-
-
Scottish Highlands
-
Scottish Northern Highlands (1)
-
-
-
-
-
-
-
International Ocean Discovery Program (3)
-
Jack Hills (1)
-
Mexico
-
Sierra Madre Oriental (1)
-
Yucatan Mexico
-
Yaxcopoil-1 (1)
-
-
-
North America
-
Canadian Shield
-
Superior Province (1)
-
-
Great Lakes
-
Lake Superior (1)
-
-
Grenville Front (1)
-
Lake Superior region (1)
-
Western Interior
-
Western Interior Seaway (1)
-
-
-
polar regions (1)
-
South America
-
Brazil (2)
-
Chile
-
Atacama Desert (2)
-
-
Guyana (1)
-
Parana Basin (1)
-
-
United States
-
Alabama
-
Elmore County Alabama (1)
-
-
Atlantic Coastal Plain (1)
-
Chesapeake Bay (5)
-
Colorado (1)
-
Indiana
-
Kentland impact structure (2)
-
Newton County Indiana (2)
-
-
Michigan (1)
-
Minnesota
-
Cook County Minnesota (1)
-
-
Nevada
-
Lincoln County Nevada (1)
-
-
New Jersey (1)
-
South Dakota
-
Badlands National Park (1)
-
-
Tennessee
-
Jackson County Tennessee (1)
-
-
Texas
-
West Texas (1)
-
-
Utah (1)
-
Virginia
-
Northampton County Virginia (15)
-
-
Wisconsin (1)
-
-
Western Desert (1)
-
Yucatan Peninsula (3)
-
-
commodities
-
barite deposits (1)
-
diamond deposits (1)
-
geothermal energy (1)
-
glass materials (7)
-
metal ores
-
cobalt ores (1)
-
copper ores (1)
-
gold ores (1)
-
lead ores (1)
-
lead-zinc deposits (1)
-
nickel ores (1)
-
palladium ores (1)
-
platinum ores (1)
-
polymetallic ores (1)
-
silver ores (1)
-
vanadium ores (1)
-
zinc ores (1)
-
-
mineral resources (1)
-
petroleum (1)
-
-
elements, isotopes
-
carbon
-
C-13 (1)
-
C-13/C-12 (2)
-
C-14 (2)
-
-
hydrogen
-
D/H (1)
-
deuterium (1)
-
-
isotope ratios (10)
-
isotopes
-
radioactive isotopes
-
Be-10 (1)
-
C-14 (2)
-
Os-187/Os-186 (1)
-
Pb-207/Pb-204 (1)
-
Pu-244 (1)
-
-
stable isotopes
-
C-13 (1)
-
C-13/C-12 (2)
-
Cr-53/Cr-52 (2)
-
D/H (1)
-
deuterium (1)
-
He-3 (1)
-
Hf-177/Hf-176 (1)
-
Li-7/Li-6 (1)
-
O-18/O-16 (1)
-
Os-187/Os-186 (1)
-
Os-188/Os-187 (2)
-
Pb-207/Pb-204 (1)
-
S-34/S-32 (1)
-
W-182 (1)
-
-
-
metals
-
actinides
-
plutonium
-
Pu-244 (1)
-
-
-
alkali metals
-
lithium
-
Li-7/Li-6 (1)
-
-
-
alkaline earth metals
-
beryllium
-
Be-10 (1)
-
-
magnesium (1)
-
-
chromium
-
Cr-53/Cr-52 (2)
-
-
cobalt (1)
-
hafnium
-
Hf-177/Hf-176 (1)
-
-
iron
-
ferric iron (1)
-
ferrous iron (1)
-
-
lead
-
Pb-207/Pb-204 (1)
-
-
manganese (1)
-
nickel (5)
-
platinum group
-
iridium (2)
-
osmium
-
Os-187/Os-186 (1)
-
Os-188/Os-187 (2)
-
-
palladium ores (1)
-
platinum ores (1)
-
-
precious metals (1)
-
rare earths (6)
-
tungsten
-
W-182 (1)
-
-
-
nitrogen (1)
-
noble gases
-
helium
-
He-3 (1)
-
-
xenon (1)
-
-
oxygen
-
O-18/O-16 (1)
-
-
phosphorus (1)
-
silicon (1)
-
sulfur
-
S-34/S-32 (1)
-
-
-
fossils
-
Chordata
-
Vertebrata
-
Tetrapoda
-
Mammalia
-
Theria
-
Eutheria
-
Primates
-
Hominidae
-
Homo
-
Homo erectus (1)
-
-
-
-
-
-
-
-
-
-
fossil man (1)
-
Invertebrata
-
Protista
-
Foraminifera (1)
-
-
-
microfossils
-
Conodonta (1)
-
-
Plantae
-
algae
-
nannofossils (1)
-
-
Spermatophyta
-
Gymnospermae
-
Coniferales (1)
-
-
-
-
thallophytes (1)
-
-
geochronology methods
-
Ar/Ar (6)
-
exposure age (1)
-
fission-track dating (1)
-
K/Ar (1)
-
paleomagnetism (6)
-
Pb/Pb (1)
-
thermoluminescence (1)
-
U/Pb (8)
-
-
geologic age
-
Cenozoic
-
Quaternary
-
Holocene (1)
-
Pleistocene
-
middle Pleistocene (1)
-
upper Pleistocene (2)
-
-
-
Tertiary
-
lower Tertiary (2)
-
Neogene
-
Miocene (1)
-
Pliocene (1)
-
-
Paleogene
-
Eocene
-
upper Eocene (14)
-
-
Oligocene (2)
-
Paleocene
-
lower Paleocene
-
K-T boundary (3)
-
-
-
-
-
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous
-
Fox Hills Formation (1)
-
K-T boundary (3)
-
Maestrichtian (1)
-
Mooreville Chalk (1)
-
Senonian (1)
-
-
-
Jurassic
-
Lower Jurassic (1)
-
-
Triassic
-
Lower Triassic
-
Permian-Triassic boundary (1)
-
-
-
-
Paleozoic
-
Cambrian
-
Semri Series (1)
-
-
Carboniferous
-
Mississippian (1)
-
-
Chattanooga Shale (1)
-
Devonian
-
Guilmette Formation (1)
-
Upper Devonian
-
Frasnian (1)
-
-
-
lower Paleozoic (1)
-
Ordovician
-
Lower Ordovician (1)
-
-
Permian
-
Upper Permian
-
Permian-Triassic boundary (1)
-
-
-
-
Precambrian
-
Animikie Group (1)
-
Archean
-
Neoarchean (1)
-
-
Biwabik Iron Formation (1)
-
Gunflint Iron Formation (1)
-
Hadean (1)
-
upper Precambrian
-
Proterozoic
-
Athabasca Formation (1)
-
Huronian
-
Onaping Formation (1)
-
-
Lewisian (1)
-
Mesoproterozoic (5)
-
Neoproterozoic
-
Torridonian (3)
-
-
Paleoproterozoic
-
Marquette Range Supergroup (1)
-
-
-
-
-
Vindhyan (1)
-
-
igneous rocks
-
igneous rocks
-
granophyre (2)
-
kimberlite (1)
-
plutonic rocks
-
anorthosite (3)
-
diabase (1)
-
diorites
-
quartz diorites (1)
-
-
gabbros
-
norite (2)
-
troctolite (1)
-
-
granites
-
charnockite (2)
-
felsite (1)
-
-
pegmatite (3)
-
ultramafics
-
pyroxenite
-
orthopyroxenite (1)
-
-
-
-
volcanic rocks
-
basalts
-
flood basalts (1)
-
-
dacites (1)
-
glasses
-
perlite (1)
-
volcanic glass (2)
-
-
rhyolites (2)
-
-
-
-
metamorphic rocks
-
metamorphic rocks
-
amphibolites (3)
-
gneisses (6)
-
impactites
-
impact breccia
-
lunar breccia (11)
-
suevite (38)
-
-
-
metasedimentary rocks (3)
-
metasomatic rocks (1)
-
mylonites
-
pseudotachylite (6)
-
-
-
turbidite (2)
-
-
meteorites
-
meteorites
-
iron meteorites (1)
-
Northwest Africa Meteorites (1)
-
stony meteorites
-
achondrites
-
lunar meteorites (3)
-
-
chondrites
-
carbonaceous chondrites (1)
-
enstatite chondrites (1)
-
ordinary chondrites
-
L chondrites (1)
-
-
-
-
-
-
minerals
-
alloys
-
nitrides (1)
-
-
carbonates
-
calcite (1)
-
-
halides (1)
-
minerals (3)
-
native elements
-
carbonado (1)
-
chaoite (1)
-
diamond (6)
-
graphite (5)
-
-
oxides
-
anatase (1)
-
armalcolite (1)
-
chromite (2)
-
ferropseudobrookite (1)
-
hercynite (1)
-
ilmenite (1)
-
iron oxides (1)
-
magnesioferrite (1)
-
magnetite (4)
-
manganese oxides (1)
-
niobates
-
betafite (1)
-
-
periclase (1)
-
rutile (4)
-
tantalates
-
betafite (1)
-
microlite (1)
-
-
titanium oxides (1)
-
wustite (1)
-
-
phosphates
-
apatite (1)
-
turquoise (1)
-
-
silicates
-
aluminosilicates
-
maskelynite (1)
-
-
chain silicates
-
pyroxene group
-
clinopyroxene
-
jadeite (1)
-
spodumene (2)
-
-
-
-
framework silicates
-
feldspar group
-
alkali feldspar
-
adularia (1)
-
-
plagioclase
-
albite (1)
-
-
-
nepheline group (1)
-
silica minerals
-
coesite (4)
-
cristobalite (7)
-
jasper (1)
-
lechatelierite (2)
-
opal
-
opal-A (1)
-
opal-CT (1)
-
-
quartz
-
alpha quartz (1)
-
-
stishovite (3)
-
tridymite (3)
-
-
zeolite group
-
mordenite (1)
-
-
-
orthosilicates
-
nesosilicates
-
garnet group (2)
-
olivine group
-
fayalite (1)
-
olivine (3)
-
ringwoodite (1)
-
wadsleyite (1)
-
-
sillimanite (2)
-
titanite group
-
titanite (1)
-
-
zircon group
-
zircon (16)
-
-
-
-
ring silicates
-
cordierite (2)
-
-
sheet silicates
-
chlorite group
-
chlorite (1)
-
clinochlore (1)
-
-
clay minerals (1)
-
mica group
-
biotite (1)
-
muscovite (1)
-
-
-
-
sulfates
-
jarosite (1)
-
-
sulfides
-
nickel sulfides (1)
-
pyrite (1)
-
troilite (1)
-
-
-
Primary terms
-
absolute age (17)
-
Africa
-
Central Africa
-
Congo Democratic Republic (1)
-
-
North Africa
-
Egypt (3)
-
-
Southern Africa
-
Barberton greenstone belt (1)
-
South Africa
-
Free State South Africa
-
Vredefort Dome (7)
-
-
-
-
West Africa
-
Ghana
-
Bosumtwi Crater (5)
-
-
Ivory Coast (2)
-
-
-
Antarctica
-
Queen Maud Land
-
Sor-Rondane Mountains (1)
-
-
-
Arctic Ocean
-
Barents Sea (1)
-
-
Arctic region
-
Greenland
-
Greenland ice sheet (1)
-
-
-
Asia
-
Arabian Peninsula
-
Yemen (1)
-
-
Central Asia
-
Kazakhstan
-
Aktyubinsk Kazakhstan
-
Zhamanshin Crater (1)
-
-
-
-
Far East
-
China
-
North China Platform (1)
-
Qinling Mountains (1)
-
-
Indochina (1)
-
Indonesia (1)
-
Vietnam
-
Dalat Vietnam (1)
-
-
-
Indian Peninsula
-
India
-
Bundelkhand (1)
-
-
-
Popigay Structure (3)
-
Sakhalin Russian Federation
-
Sakhalin (1)
-
-
Southeast Asia (1)
-
Tibetan Plateau (1)
-
-
asteroids (3)
-
Atlantic Ocean
-
North Atlantic
-
Faeroe-Shetland Basin (1)
-
Gulf of Mexico (4)
-
North Sea
-
Viking Graben (1)
-
-
Northeast Atlantic (1)
-
Northwest Atlantic (1)
-
-
-
atmosphere (2)
-
Australasia
-
Australia
-
Western Australia
-
Hamersley Basin (1)
-
-
-
-
barite deposits (1)
-
Canada
-
Arctic Archipelago (2)
-
Carswell Structure (2)
-
Eastern Canada
-
Ontario
-
Frontenac County Ontario (1)
-
Sudbury igneous complex (2)
-
Sudbury Structure (6)
-
Thunder Bay District Ontario (1)
-
-
Quebec
-
Charlevoix (1)
-
New Quebec Crater (1)
-
-
-
Nunavut
-
Devon Island (3)
-
Haughton impact structure (2)
-
-
Queen Elizabeth Islands
-
Devon Island (3)
-
-
Ungava (1)
-
Western Canada
-
Alberta (1)
-
Athabasca Basin (1)
-
Northwest Territories (1)
-
Saskatchewan (1)
-
-
-
carbon
-
C-13 (1)
-
C-13/C-12 (2)
-
C-14 (2)
-
-
Cenozoic
-
Quaternary
-
Holocene (1)
-
Pleistocene
-
middle Pleistocene (1)
-
upper Pleistocene (2)
-
-
-
Tertiary
-
lower Tertiary (2)
-
Neogene
-
Miocene (1)
-
Pliocene (1)
-
-
Paleogene
-
Eocene
-
upper Eocene (14)
-
-
Oligocene (2)
-
Paleocene
-
lower Paleocene
-
K-T boundary (3)
-
-
-
-
-
-
Chordata
-
Vertebrata
-
Tetrapoda
-
Mammalia
-
Theria
-
Eutheria
-
Primates
-
Hominidae
-
Homo
-
Homo erectus (1)
-
-
-
-
-
-
-
-
-
-
climate change (2)
-
continental slope (1)
-
core (1)
-
crust (1)
-
crystal chemistry (1)
-
crystal growth (5)
-
crystal structure (5)
-
crystallography (2)
-
Deep Sea Drilling Project
-
IPOD
-
Leg 95
-
DSDP Site 612 (1)
-
-
-
-
deformation (10)
-
diagenesis (2)
-
diamond deposits (1)
-
Earth (1)
-
ecology (1)
-
Europe
-
Arkhangelsk Russian Federation
-
Nenets Russian Federation (1)
-
-
Baltic region
-
Estonia (1)
-
-
Belarus (1)
-
Central Europe
-
Germany
-
Bavaria Germany
-
Ries Crater (17)
-
-
Steinheim Basin (1)
-
-
-
Ukraine
-
Boltyshka Depression (1)
-
-
Western Europe
-
France
-
Central Massif (2)
-
Charente France (1)
-
Rochechouart Crater (3)
-
-
Iceland (2)
-
Scandinavia
-
Finland
-
Lake Lappajarvi (1)
-
-
Norway
-
Southern Norway (1)
-
-
Sweden
-
Jamtland Sweden
-
Lockne Crater (1)
-
-
-
-
United Kingdom
-
Great Britain
-
Scotland
-
Highland region Scotland
-
Sutherland Scotland
-
Assynt (1)
-
-
-
Scottish Highlands
-
Scottish Northern Highlands (1)
-
-
-
-
-
-
-
explosions (1)
-
faults (7)
-
folds (3)
-
fossil man (1)
-
fractures (2)
-
geochemistry (17)
-
geochronology (4)
-
geodesy (1)
-
geology (1)
-
geomorphology (5)
-
geophysical methods (3)
-
geothermal energy (1)
-
glacial geology (1)
-
ground water (2)
-
hydrogen
-
D/H (1)
-
deuterium (1)
-
-
hydrology (1)
-
igneous rocks
-
granophyre (2)
-
kimberlite (1)
-
plutonic rocks
-
anorthosite (3)
-
diabase (1)
-
diorites
-
quartz diorites (1)
-
-
gabbros
-
norite (2)
-
troctolite (1)
-
-
granites
-
charnockite (2)
-
felsite (1)
-
-
pegmatite (3)
-
ultramafics
-
pyroxenite
-
orthopyroxenite (1)
-
-
-
-
volcanic rocks
-
basalts
-
flood basalts (1)
-
-
dacites (1)
-
glasses
-
perlite (1)
-
volcanic glass (2)
-
-
rhyolites (2)
-
-
-
inclusions
-
fluid inclusions (1)
-
-
intrusions (6)
-
Invertebrata
-
Protista
-
Foraminifera (1)
-
-
-
isotopes
-
radioactive isotopes
-
Be-10 (1)
-
C-14 (2)
-
Os-187/Os-186 (1)
-
Pb-207/Pb-204 (1)
-
Pu-244 (1)
-
-
stable isotopes
-
C-13 (1)
-
C-13/C-12 (2)
-
Cr-53/Cr-52 (2)
-
D/H (1)
-
deuterium (1)
-
He-3 (1)
-
Hf-177/Hf-176 (1)
-
Li-7/Li-6 (1)
-
O-18/O-16 (1)
-
Os-187/Os-186 (1)
-
Os-188/Os-187 (2)
-
Pb-207/Pb-204 (1)
-
S-34/S-32 (1)
-
W-182 (1)
-
-
-
lava (1)
-
magmas (2)
-
mantle (2)
-
maps (1)
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous
-
Fox Hills Formation (1)
-
K-T boundary (3)
-
Maestrichtian (1)
-
Mooreville Chalk (1)
-
Senonian (1)
-
-
-
Jurassic
-
Lower Jurassic (1)
-
-
Triassic
-
Lower Triassic
-
Permian-Triassic boundary (1)
-
-
-
-
metal ores
-
cobalt ores (1)
-
copper ores (1)
-
gold ores (1)
-
lead ores (1)
-
lead-zinc deposits (1)
-
nickel ores (1)
-
palladium ores (1)
-
platinum ores (1)
-
polymetallic ores (1)
-
silver ores (1)
-
vanadium ores (1)
-
zinc ores (1)
-
-
metals
-
actinides
-
plutonium
-
Pu-244 (1)
-
-
-
alkali metals
-
lithium
-
Li-7/Li-6 (1)
-
-
-
alkaline earth metals
-
beryllium
-
Be-10 (1)
-
-
magnesium (1)
-
-
chromium
-
Cr-53/Cr-52 (2)
-
-
cobalt (1)
-
hafnium
-
Hf-177/Hf-176 (1)
-
-
iron
-
ferric iron (1)
-
ferrous iron (1)
-
-
lead
-
Pb-207/Pb-204 (1)
-
-
manganese (1)
-
nickel (5)
-
platinum group
-
iridium (2)
-
osmium
-
Os-187/Os-186 (1)
-
Os-188/Os-187 (2)
-
-
palladium ores (1)
-
platinum ores (1)
-
-
precious metals (1)
-
rare earths (6)
-
tungsten
-
W-182 (1)
-
-
-
metamorphic rocks
-
amphibolites (3)
-
gneisses (6)
-
impactites
-
impact breccia
-
lunar breccia (11)
-
suevite (38)
-
-
-
metasedimentary rocks (3)
-
metasomatic rocks (1)
-
mylonites
-
pseudotachylite (6)
-
-
-
metamorphism (53)
-
metasomatism (10)
-
meteorites
-
iron meteorites (1)
-
Northwest Africa Meteorites (1)
-
stony meteorites
-
achondrites
-
lunar meteorites (3)
-
-
chondrites
-
carbonaceous chondrites (1)
-
enstatite chondrites (1)
-
ordinary chondrites
-
L chondrites (1)
-
-
-
-
-
Mexico
-
Sierra Madre Oriental (1)
-
Yucatan Mexico
-
Yaxcopoil-1 (1)
-
-
-
mineral resources (1)
-
mineralogy (2)
-
minerals (3)
-
Mohorovicic discontinuity (1)
-
Moon (20)
-
nitrogen (1)
-
noble gases
-
helium
-
He-3 (1)
-
-
xenon (1)
-
-
North America
-
Canadian Shield
-
Superior Province (1)
-
-
Great Lakes
-
Lake Superior (1)
-
-
Grenville Front (1)
-
Lake Superior region (1)
-
Western Interior
-
Western Interior Seaway (1)
-
-
-
Ocean Drilling Program
-
Leg 104
-
ODP Site 643 (1)
-
-
-
orogeny (1)
-
oxygen
-
O-18/O-16 (1)
-
-
paleoecology (1)
-
paleogeography (4)
-
paleomagnetism (6)
-
Paleozoic
-
Cambrian
-
Semri Series (1)
-
-
Carboniferous
-
Mississippian (1)
-
-
Chattanooga Shale (1)
-
Devonian
-
Guilmette Formation (1)
-
Upper Devonian
-
Frasnian (1)
-
-
-
lower Paleozoic (1)
-
Ordovician
-
Lower Ordovician (1)
-
-
Permian
-
Upper Permian
-
Permian-Triassic boundary (1)
-
-
-
-
paragenesis (1)
-
permafrost (1)
-
petroleum (1)
-
petrology (5)
-
phase equilibria (4)
-
phosphorus (1)
-
planetology (3)
-
Plantae
-
algae
-
nannofossils (1)
-
-
Spermatophyta
-
Gymnospermae
-
Coniferales (1)
-
-
-
-
pollution (2)
-
Precambrian
-
Animikie Group (1)
-
Archean
-
Neoarchean (1)
-
-
Biwabik Iron Formation (1)
-
Gunflint Iron Formation (1)
-
Hadean (1)
-
upper Precambrian
-
Proterozoic
-
Athabasca Formation (1)
-
Huronian
-
Onaping Formation (1)
-
-
Lewisian (1)
-
Mesoproterozoic (5)
-
Neoproterozoic
-
Torridonian (3)
-
-
Paleoproterozoic
-
Marquette Range Supergroup (1)
-
-
-
-
-
remote sensing (3)
-
sea water (2)
-
sea-level changes (1)
-
sedimentary rocks
-
carbonate rocks
-
chalk (1)
-
limestone (2)
-
-
chemically precipitated rocks
-
iron formations
-
banded iron formations (1)
-
-
-
clastic rocks
-
conglomerate (1)
-
diamictite (1)
-
sandstone (6)
-
shale (1)
-
tillite (1)
-
-
coal
-
lignite (1)
-
-
-
sedimentary structures
-
planar bedding structures
-
laminations (1)
-
-
seismites (1)
-
soft sediment deformation
-
olistoliths (1)
-
-
-
sedimentation (5)
-
sediments
-
clastic sediments
-
diamicton (2)
-
outwash (1)
-
sand (1)
-
-
marine sediments (1)
-
-
silicon (1)
-
South America
-
Brazil (2)
-
Chile
-
Atacama Desert (2)
-
-
Guyana (1)
-
Parana Basin (1)
-
-
spectroscopy (1)
-
stratigraphy (1)
-
structural analysis (6)
-
sulfur
-
S-34/S-32 (1)
-
-
tectonics (5)
-
tectonophysics (1)
-
tektites (9)
-
thallophytes (1)
-
United States
-
Alabama
-
Elmore County Alabama (1)
-
-
Atlantic Coastal Plain (1)
-
Chesapeake Bay (5)
-
Colorado (1)
-
Indiana
-
Kentland impact structure (2)
-
Newton County Indiana (2)
-
-
Michigan (1)
-
Minnesota
-
Cook County Minnesota (1)
-
-
Nevada
-
Lincoln County Nevada (1)
-
-
New Jersey (1)
-
South Dakota
-
Badlands National Park (1)
-
-
Tennessee
-
Jackson County Tennessee (1)
-
-
Texas
-
West Texas (1)
-
-
Utah (1)
-
Virginia
-
Northampton County Virginia (15)
-
-
Wisconsin (1)
-
-
weathering (2)
-
X-ray analysis (1)
-
-
rock formations
-
Deccan Traps (1)
-
-
sedimentary rocks
-
sedimentary rocks
-
carbonate rocks
-
chalk (1)
-
limestone (2)
-
-
chemically precipitated rocks
-
iron formations
-
banded iron formations (1)
-
-
-
clastic rocks
-
conglomerate (1)
-
diamictite (1)
-
sandstone (6)
-
shale (1)
-
tillite (1)
-
-
coal
-
lignite (1)
-
-
-
turbidite (2)
-
-
sedimentary structures
-
sedimentary structures
-
planar bedding structures
-
laminations (1)
-
-
seismites (1)
-
soft sediment deformation
-
olistoliths (1)
-
-
-
stratification (1)
-
-
sediments
-
sediments
-
clastic sediments
-
diamicton (2)
-
outwash (1)
-
sand (1)
-
-
marine sediments (1)
-
-
turbidite (2)
-
-
soils
-
paleosols (1)
-
impactites
Mushroom-shaped growth of crystals on the Moon
The Holleford structure: Insights into the pre- and post-impact geology of the Frontenac Terrane, Canada
Geochemical evidence for a chondritic impactor in altered impact glass from the Stac Fada Member impactite, NW Scotland
Ilmenite phase transformations in suevite from the Ries impact structure (Germany) record evolution in pressure, temperature, and oxygen fugacity conditions
Lunar Meteorites
Lunar Impact Features and Processes
Understanding the Ries impact structure subsurface from high-resolution seismic data
Oceanic resurge deposits at the Rochechouart impact structure (France) suggest a marine target environment
Origin of β-cristobalite in Libyan Desert Glass: The hottest naturally occurring silica polymorph?
ABSTRACT Formation of the Central European tektites, known as moldavites, has been associated with a large meteorite impact in southern Germany 14.8 m.y. ago. The geochemical link between moldavites and their source materials, and the processes of their possible chemical differentiation still remain uncertain. Some differences in chemical composition between moldavites and sediments of corresponding age from the surroundings of the Ries crater could be explained by a hypothesis according to which biomass covering the pre-impact area contributed to the source materials. In a comparison of the geochemical compositions of a large representative set of moldavites and suitable Ries sediments, enrichment in elements K, Ca, Mg, and Mn and depletion of Na in moldavites, similar to redistribution of these elements during their transfer from soil to plants, could indicate the unconventional biogenic component in moldavite source materials. Simple mixing calculations of the most suitable Ries sediments and a model biogenic component represented by burned biomass residue are presented. The plausibility of the estimated biomass contribution considering reconstructions of the middle Miocene paleoenvironment in the pre-impact Ries area is discussed. No significant vapor fractionation is required to explain the observed variability of moldavite chemical composition.
Layered sediments on Mars deposited by impacts instead of by liquid water
ABSTRACT Layered deposits on Mars imaged by the three rovers are generally inferred to have been deposited by liquid water (or wind or volcanism), consistent with interpretations based on orbital imaging. This interpretation implies early Mars was warm and wet, despite long-standing problems with modeling this case. As an alternative hypothesis, rapid sediment deposition during Late Noachian impact bombardment followed by local hydration and alteration of sediment by surficial acid condensates and (at least in Gale Crater) by chemically neutral groundwater can explain all the observed sediment features, such as ubiquitous low-angle cross-bedding, primitive basaltic compositions, persistent acidic salts, abundant amorphous materials, immature clays, high friability with low bulk densities, planar scoured unconformities, and rounded cobbles from rock tumbling. In other words, the ground-observed mineralogy, geochemistry, and sedimentology do not require and even are inconsistent with deposition from liquid water. Unlike the Moon, early Mars is believed to have had an atmosphere and water, perhaps mostly frozen. If so, impacts should have formed turbulent ground-hugging impactoclastic density currents capable of traveling hundreds of kilometers, and even globally. As terrestrial analogs, smaller-scale density currents are widespread around explosive volcanoes and nuclear test sites, whereas terrestrial impact analogs are lacking. Steam condensation on particles causes accretionary lapilli to form, grow to a maximum size, and fall out on layered deposits, and similar spherules have been observed by two of three rovers. Explaining these spherules as normal sedimentary concretions at Meridiani Planum required ignoring some of the observations. Ancient sediments on Mars that superficially resemble terrestrial aqueous deposits could therefore actually have resulted from impact cratering, the dominant geologic process in the early solar system.
Terrestrial ejecta suborbital transport and the rotating frame transform
ABSTRACT Suborbital analysis (SA) is presented here as the study of ballistics around a spherical planet. SA is the subset of orbital mechanics where the elliptic trajectory intersects Earth’s surface at launch point A and fall point B , known as the A -to- B suborbital problem, both launch and fall points being vector variables. Spreadsheet tools are offered for solution to this problem, based on the preferred simplified two-body model. Although simplistic in top-level description, this problem places essential reliance on reference frame transformations. Launch conditions in the local frame of point A and rotating with Earth require conversion to the nonrotating frame for correct trajectory definition, with the reverse process required for complete solution. This application of dynamics requires diligent accounting to avoid invalid results. Historic examples are provided that lack the requisite treatment, with the appropriate set of solution equations also included. Complementary spreadsheet tools SASolver and Helix solve the A -to- B problem for loft duration from minimum through 26 h. All provided spreadsheet workbook files contain the novel three-dimensional latitude and longitude plotter GlobePlot. A global ejecta pattern data set calculated using SASolver is presented. As visualized through GlobePlot, SASolver and Helix provide solutions to different forms of the A -to- B problem, in an effort to avoid errors similar to the historic misstep examples offered as a supplement. Operating guidelines and limitations of the tools are presented along with diagrams from each step. The goal is to enable mechanically valid interdisciplinary terrestrial ejecta research through novel perspective and quality graphical tools, so others may succeed where 1960s National Aeronautics and Space Administration researchers did not.
Widespread glasses generated by cometary fireballs during the late Pleistocene in the Atacama Desert, Chile: COMMENT
Widespread glasses generated by cometary fireballs during the late Pleistocene in the Atacama Desert, Chile: REPLY
Non-Magmatic Glasses
A high-pressure, clinopyroxene-structured polymorph of albite in highly shocked terrestrial and meteoritic rocks
Microporphyritic and microspherulitic melt grains, Hiawatha crater, Northwest Greenland: Implications for post-impact cooling rates, hydration, and the cratering environment
X-ray computed microtomography of diamondiferous impact suevitic breccia and clast-poor melt rock from the Kara astrobleme (Pay-Khoy, Russia)
ABSTRACT Quantitative insights into the geochemistry and petrology of proximal impactites are fundamental to understand the complex processes that affected target lithologies during and after hypervelocity impact events. Traditional analytical techniques used to obtain major- and trace-element data sets focus predominantly on either destructive whole-rock analysis or laboratory-intensive phase-specific micro-analysis. Here, we present micro–X-ray fluorescence (µXRF) as a state-of-the-art, time-efficient, and nondestructive alternative for major- and trace-element analysis for both small and large samples (up to 20 cm wide) of proximal impactites. We applied µXRF element mapping on 44 samples from the Chicxulub, Popigai, and Ries impact structures, including impact breccias, impact melt rocks, and shocked target lithologies. The µXRF mapping required limited to no sample preparation and rapidly generated high-resolution major- and trace-element maps (~1 h for 8 cm 2 , with a spatial resolution of 25 µm). These chemical distribution maps can be used as qualitative multi-element maps, as semiquantitative single-element heat maps, and as a basis for a novel image analysis workflow quantifying the modal abundance, size, shape, and degree of sorting of segmented components. The standardless fundamental parameters method was used to quantify the µXRF maps, and the results were compared with bulk powder techniques. Concentrations of most major elements (Na 2 O–CaO) were found to be accurate within 10% for thick sections. Overall, we demonstrate that µXRF is more than only a screening tool for heterogeneous impactites, because it rapidly produces bulk and phase-specific geochemical data sets that are suitable for various applications within the earth sciences.