Update search
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
Format
Article Type
Journal
Publisher
Section
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Arctic Ocean
-
Beaufort Sea (1)
-
Norwegian Sea
-
Haltenbanken (1)
-
-
-
Arctic region
-
Greenland
-
South Greenland (1)
-
-
-
Atlantic Ocean
-
Mid-Atlantic Ridge (1)
-
North Atlantic
-
Baltimore Canyon (2)
-
Bay of Biscay (1)
-
Bay of Fundy (1)
-
Charlie-Gibbs fracture zone (1)
-
Flemish Cap (4)
-
Georges Bank (2)
-
Goban Spur (1)
-
Gulf of Mexico (1)
-
Gulf of Saint Lawrence (2)
-
Jeanne d'Arc Basin (17)
-
Labrador Sea
-
Labrador Shelf (4)
-
-
North Sea (1)
-
Northeast Atlantic
-
Galicia Bank (1)
-
Iberian abyssal plain (1)
-
Porcupine Bank (1)
-
-
Northwest Atlantic
-
Hibernia Field (4)
-
-
Porcupine Basin (1)
-
Scotian Shelf (12)
-
Scotian Slope (1)
-
Sohm abyssal plain (1)
-
-
South Atlantic
-
Santos Basin (1)
-
Southwest Atlantic (1)
-
-
-
Atlantic region (2)
-
Avalon Zone (2)
-
Baffin Bay (1)
-
Canada
-
Eastern Canada
-
Maritime Provinces
-
New Brunswick (1)
-
Nova Scotia
-
Cape Breton Island (1)
-
Cobequid Fault (1)
-
-
-
Newfoundland and Labrador
-
Labrador (9)
-
Newfoundland
-
Avalon Peninsula (1)
-
Burin Peninsula (1)
-
-
-
Quebec (1)
-
-
Northumberland Strait (1)
-
Nunavut
-
Sverdrup Basin (1)
-
-
Queen Elizabeth Islands
-
Sverdrup Basin (1)
-
-
Western Canada
-
Alberta (1)
-
British Columbia
-
Fraser River delta (1)
-
-
Northwest Territories (1)
-
-
-
Caribbean region
-
West Indies
-
Bahamas (1)
-
-
-
Commonwealth of Independent States
-
Russian Federation
-
Timan Ridge (1)
-
-
Timan Ridge (1)
-
-
Europe
-
Southern Europe
-
Iberian Peninsula
-
Portugal (1)
-
Spain
-
Cantabrian Basin (2)
-
-
-
-
Timan Ridge (1)
-
Western Europe
-
France
-
Aquitaine Basin (1)
-
-
Ireland (1)
-
Scandinavia
-
Norway (1)
-
-
United Kingdom
-
Great Britain
-
England (1)
-
Wales (1)
-
-
-
-
-
Grand Banks (92)
-
Indian Ocean
-
Red Sea (1)
-
-
Lusitanian Basin (3)
-
Mediterranean Sea
-
East Mediterranean (1)
-
-
Midlands (1)
-
Newfoundland Basin (1)
-
North America
-
Saint Lawrence Lowlands (1)
-
-
Peace River (1)
-
Russian Platform
-
Timan Ridge (1)
-
-
South America
-
Argentina (1)
-
Tierra del Fuego (1)
-
-
United States
-
Atlantic Coastal Plain (3)
-
Georgia (1)
-
Massachusetts (1)
-
New England (1)
-
-
-
commodities
-
construction materials
-
dimension stone (1)
-
-
energy sources (6)
-
metal ores
-
base metals (1)
-
gold ores (1)
-
-
mineral exploration (1)
-
oil and gas fields (8)
-
petroleum
-
natural gas (2)
-
-
-
elements, isotopes
-
carbon
-
C-14 (5)
-
-
chemical ratios (1)
-
hydrogen (1)
-
isotope ratios (2)
-
isotopes
-
radioactive isotopes
-
C-14 (5)
-
Sm-147/Nd-144 (1)
-
-
stable isotopes
-
Nd-144/Nd-143 (2)
-
Sm-147/Nd-144 (1)
-
Sr-87/Sr-86 (1)
-
-
-
Lu/Hf (1)
-
metals
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (1)
-
-
-
lead (1)
-
rare earths
-
neodymium
-
Nd-144/Nd-143 (2)
-
Sm-147/Nd-144 (1)
-
-
samarium
-
Sm-147/Nd-144 (1)
-
-
-
-
-
fossils
-
burrows (1)
-
ichnofossils
-
Ophiomorpha (1)
-
-
Invertebrata
-
Arthropoda
-
Mandibulata
-
Crustacea
-
Malacostraca (1)
-
Ostracoda (2)
-
-
-
-
Protista
-
Foraminifera
-
Rotaliina
-
Buliminacea
-
Uvigerinidae
-
Uvigerina (1)
-
-
-
Cassidulinacea
-
Anomalinidae
-
Cibicidoides (1)
-
-
-
Globigerinacea
-
Neogloboquadrina
-
Neogloboquadrina pachyderma (1)
-
-
-
Nodosariacea
-
Nodosariidae
-
Lenticulina (1)
-
Nodosaria (1)
-
-
-
-
-
Radiolaria (1)
-
Tintinnidae
-
Calpionella (1)
-
-
-
-
microfossils
-
Chitinozoa (2)
-
-
palynomorphs
-
acritarchs (2)
-
Chitinozoa (2)
-
Dinoflagellata (6)
-
miospores
-
pollen (1)
-
-
-
Plantae
-
algae
-
Coccolithophoraceae (1)
-
nannofossils (1)
-
-
-
thallophytes (1)
-
-
geochronology methods
-
Lu/Hf (1)
-
paleomagnetism (2)
-
U/Pb (1)
-
-
geologic age
-
Cenozoic
-
Quaternary
-
Holocene
-
Atlantic (1)
-
-
Pleistocene
-
upper Pleistocene
-
Weichselian
-
upper Weichselian
-
Younger Dryas (1)
-
-
-
Wisconsinan (2)
-
Wurm (1)
-
-
-
upper Quaternary
-
Brunhes Chron (1)
-
-
-
Tertiary
-
Neogene
-
Miocene (1)
-
Pliocene (2)
-
upper Neogene (1)
-
-
Paleogene
-
lower Paleogene (1)
-
Oligocene (1)
-
Paleocene (1)
-
-
-
upper Cenozoic (3)
-
-
Laurentide ice sheet (1)
-
Mesozoic
-
Cretaceous
-
Lower Cretaceous
-
Albian (1)
-
Aptian (2)
-
Barremian (1)
-
Berriasian (1)
-
Valanginian (1)
-
-
Middle Cretaceous (1)
-
Upper Cretaceous
-
Dawson Canyon Formation (1)
-
Wyandot Formation (1)
-
-
-
Jurassic
-
Lower Jurassic
-
middle Liassic (1)
-
Pliensbachian (1)
-
-
Middle Jurassic (1)
-
Upper Jurassic
-
Jeanne d'Arc Formation (2)
-
Kimmeridgian (3)
-
Portlandian (1)
-
Tithonian (2)
-
-
-
lower Mesozoic (1)
-
Triassic
-
Upper Triassic (2)
-
-
-
Paleozoic
-
Carboniferous
-
Mississippian (1)
-
-
Devonian (1)
-
lower Paleozoic (2)
-
Ordovician
-
Upper Ordovician (1)
-
-
Permian (1)
-
upper Paleozoic (1)
-
-
Phanerozoic (2)
-
Precambrian
-
upper Precambrian
-
Proterozoic
-
Neoproterozoic (2)
-
-
-
-
-
igneous rocks
-
igneous rocks
-
plutonic rocks
-
granites
-
alkali granites (1)
-
-
syenites
-
quartz syenite (1)
-
-
-
volcanic rocks
-
basalts
-
alkali basalts (2)
-
ocean-island basalts (1)
-
tholeiite (1)
-
-
-
-
-
metamorphic rocks
-
metamorphic rocks
-
metasedimentary rocks (1)
-
-
turbidite (1)
-
-
minerals
-
halides
-
chlorides
-
halite (1)
-
-
-
silicates
-
orthosilicates
-
nesosilicates
-
zircon group
-
zircon (1)
-
-
-
-
sheet silicates
-
clay minerals
-
smectite (1)
-
-
illite (1)
-
-
-
-
Primary terms
-
absolute age (7)
-
Arctic Ocean
-
Beaufort Sea (1)
-
Norwegian Sea
-
Haltenbanken (1)
-
-
-
Arctic region
-
Greenland
-
South Greenland (1)
-
-
-
Atlantic Ocean
-
Mid-Atlantic Ridge (1)
-
North Atlantic
-
Baltimore Canyon (2)
-
Bay of Biscay (1)
-
Bay of Fundy (1)
-
Charlie-Gibbs fracture zone (1)
-
Flemish Cap (4)
-
Georges Bank (2)
-
Goban Spur (1)
-
Gulf of Mexico (1)
-
Gulf of Saint Lawrence (2)
-
Jeanne d'Arc Basin (17)
-
Labrador Sea
-
Labrador Shelf (4)
-
-
North Sea (1)
-
Northeast Atlantic
-
Galicia Bank (1)
-
Iberian abyssal plain (1)
-
Porcupine Bank (1)
-
-
Northwest Atlantic
-
Hibernia Field (4)
-
-
Porcupine Basin (1)
-
Scotian Shelf (12)
-
Scotian Slope (1)
-
Sohm abyssal plain (1)
-
-
South Atlantic
-
Santos Basin (1)
-
Southwest Atlantic (1)
-
-
-
Atlantic region (2)
-
Canada
-
Eastern Canada
-
Maritime Provinces
-
New Brunswick (1)
-
Nova Scotia
-
Cape Breton Island (1)
-
Cobequid Fault (1)
-
-
-
Newfoundland and Labrador
-
Labrador (9)
-
Newfoundland
-
Avalon Peninsula (1)
-
Burin Peninsula (1)
-
-
-
Quebec (1)
-
-
Northumberland Strait (1)
-
Nunavut
-
Sverdrup Basin (1)
-
-
Queen Elizabeth Islands
-
Sverdrup Basin (1)
-
-
Western Canada
-
Alberta (1)
-
British Columbia
-
Fraser River delta (1)
-
-
Northwest Territories (1)
-
-
-
carbon
-
C-14 (5)
-
-
Caribbean region
-
West Indies
-
Bahamas (1)
-
-
-
Cenozoic
-
Quaternary
-
Holocene
-
Atlantic (1)
-
-
Pleistocene
-
upper Pleistocene
-
Weichselian
-
upper Weichselian
-
Younger Dryas (1)
-
-
-
Wisconsinan (2)
-
Wurm (1)
-
-
-
upper Quaternary
-
Brunhes Chron (1)
-
-
-
Tertiary
-
Neogene
-
Miocene (1)
-
Pliocene (2)
-
upper Neogene (1)
-
-
Paleogene
-
lower Paleogene (1)
-
Oligocene (1)
-
Paleocene (1)
-
-
-
upper Cenozoic (3)
-
-
clay mineralogy (3)
-
construction materials
-
dimension stone (1)
-
-
continental drift (1)
-
continental shelf (14)
-
continental slope (13)
-
crust (14)
-
data processing (3)
-
Deep Sea Drilling Project
-
Leg 43
-
DSDP Site 384 (2)
-
-
-
deformation (4)
-
diagenesis (4)
-
earthquakes (6)
-
ecology (3)
-
economic geology (9)
-
energy sources (6)
-
engineering geology (2)
-
Europe
-
Southern Europe
-
Iberian Peninsula
-
Portugal (1)
-
Spain
-
Cantabrian Basin (2)
-
-
-
-
Timan Ridge (1)
-
Western Europe
-
France
-
Aquitaine Basin (1)
-
-
Ireland (1)
-
Scandinavia
-
Norway (1)
-
-
United Kingdom
-
Great Britain
-
England (1)
-
Wales (1)
-
-
-
-
-
faults (15)
-
folds (3)
-
geochemistry (5)
-
geochronology (2)
-
geophysical methods (26)
-
geophysics (1)
-
geosynclines (1)
-
glacial geology (2)
-
heat flow (3)
-
hydrogen (1)
-
ichnofossils
-
Ophiomorpha (1)
-
-
igneous rocks
-
plutonic rocks
-
granites
-
alkali granites (1)
-
-
syenites
-
quartz syenite (1)
-
-
-
volcanic rocks
-
basalts
-
alkali basalts (2)
-
ocean-island basalts (1)
-
tholeiite (1)
-
-
-
-
Indian Ocean
-
Red Sea (1)
-
-
intrusions (3)
-
Invertebrata
-
Arthropoda
-
Mandibulata
-
Crustacea
-
Malacostraca (1)
-
Ostracoda (2)
-
-
-
-
Protista
-
Foraminifera
-
Rotaliina
-
Buliminacea
-
Uvigerinidae
-
Uvigerina (1)
-
-
-
Cassidulinacea
-
Anomalinidae
-
Cibicidoides (1)
-
-
-
Globigerinacea
-
Neogloboquadrina
-
Neogloboquadrina pachyderma (1)
-
-
-
Nodosariacea
-
Nodosariidae
-
Lenticulina (1)
-
Nodosaria (1)
-
-
-
-
-
Radiolaria (1)
-
Tintinnidae
-
Calpionella (1)
-
-
-
-
isostasy (1)
-
isotopes
-
radioactive isotopes
-
C-14 (5)
-
Sm-147/Nd-144 (1)
-
-
stable isotopes
-
Nd-144/Nd-143 (2)
-
Sm-147/Nd-144 (1)
-
Sr-87/Sr-86 (1)
-
-
-
magmas (3)
-
mantle (3)
-
maps (1)
-
marine geology (8)
-
marine installations (1)
-
Mediterranean Sea
-
East Mediterranean (1)
-
-
Mesozoic
-
Cretaceous
-
Lower Cretaceous
-
Albian (1)
-
Aptian (2)
-
Barremian (1)
-
Berriasian (1)
-
Valanginian (1)
-
-
Middle Cretaceous (1)
-
Upper Cretaceous
-
Dawson Canyon Formation (1)
-
Wyandot Formation (1)
-
-
-
Jurassic
-
Lower Jurassic
-
middle Liassic (1)
-
Pliensbachian (1)
-
-
Middle Jurassic (1)
-
Upper Jurassic
-
Jeanne d'Arc Formation (2)
-
Kimmeridgian (3)
-
Portlandian (1)
-
Tithonian (2)
-
-
-
lower Mesozoic (1)
-
Triassic
-
Upper Triassic (2)
-
-
-
metal ores
-
base metals (1)
-
gold ores (1)
-
-
metals
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (1)
-
-
-
lead (1)
-
rare earths
-
neodymium
-
Nd-144/Nd-143 (2)
-
Sm-147/Nd-144 (1)
-
-
samarium
-
Sm-147/Nd-144 (1)
-
-
-
-
metamorphic rocks
-
metasedimentary rocks (1)
-
-
micropaleontology (1)
-
mineral exploration (1)
-
Mohorovicic discontinuity (3)
-
North America
-
Saint Lawrence Lowlands (1)
-
-
Ocean Drilling Program
-
Leg 103
-
ODP Site 637 (1)
-
ODP Site 638 (1)
-
ODP Site 639 (1)
-
ODP Site 640 (1)
-
ODP Site 641 (1)
-
-
Leg 113
-
ODP Site 690 (1)
-
-
Leg 149
-
ODP Site 900 (1)
-
ODP Site 901 (1)
-
-
Leg 173
-
ODP Site 1065 (1)
-
ODP Site 1067 (1)
-
ODP Site 1068 (1)
-
ODP Site 1069 (1)
-
-
Leg 210 (1)
-
-
ocean floors (5)
-
oceanography (20)
-
oil and gas fields (8)
-
orogeny (2)
-
paleoclimatology (3)
-
paleoecology (3)
-
paleogeography (12)
-
paleomagnetism (2)
-
paleontology (3)
-
Paleozoic
-
Carboniferous
-
Mississippian (1)
-
-
Devonian (1)
-
lower Paleozoic (2)
-
Ordovician
-
Upper Ordovician (1)
-
-
Permian (1)
-
upper Paleozoic (1)
-
-
palynomorphs
-
acritarchs (2)
-
Chitinozoa (2)
-
Dinoflagellata (6)
-
miospores
-
pollen (1)
-
-
-
petroleum
-
natural gas (2)
-
-
Phanerozoic (2)
-
Plantae
-
algae
-
Coccolithophoraceae (1)
-
nannofossils (1)
-
-
-
plate tectonics (15)
-
Precambrian
-
upper Precambrian
-
Proterozoic
-
Neoproterozoic (2)
-
-
-
-
reefs (1)
-
sea-floor spreading (4)
-
sea-level changes (4)
-
sedimentary petrology (3)
-
sedimentary rocks
-
carbonate rocks
-
chalk (1)
-
-
chemically precipitated rocks
-
evaporites (1)
-
-
clastic rocks
-
arenite
-
quartz arenite (1)
-
-
conglomerate (1)
-
sandstone (6)
-
shale (1)
-
siltstone (1)
-
-
-
sedimentary structures
-
bedding plane irregularities
-
grooves (1)
-
-
biogenic structures
-
bioturbation (1)
-
-
-
sedimentation (16)
-
sediments
-
carbonate sediments (1)
-
clastic sediments
-
drift (1)
-
gravel (1)
-
sand (1)
-
till (1)
-
-
marine sediments (10)
-
-
seismology (2)
-
slope stability (1)
-
South America
-
Argentina (1)
-
Tierra del Fuego (1)
-
-
stratigraphy (28)
-
structural analysis (1)
-
structural geology (4)
-
tectonics
-
salt tectonics (5)
-
-
tectonophysics (7)
-
thallophytes (1)
-
United States
-
Atlantic Coastal Plain (3)
-
Georgia (1)
-
Massachusetts (1)
-
New England (1)
-
-
weathering (1)
-
well-logging (6)
-
-
rock formations
-
Banquereau Formation (1)
-
-
sedimentary rocks
-
oolite (1)
-
sedimentary rocks
-
carbonate rocks
-
chalk (1)
-
-
chemically precipitated rocks
-
evaporites (1)
-
-
clastic rocks
-
arenite
-
quartz arenite (1)
-
-
conglomerate (1)
-
sandstone (6)
-
shale (1)
-
siltstone (1)
-
-
-
turbidite (1)
-
volcaniclastics (1)
-
-
sedimentary structures
-
burrows (1)
-
sedimentary structures
-
bedding plane irregularities
-
grooves (1)
-
-
biogenic structures
-
bioturbation (1)
-
-
-
-
sediments
-
oolite (1)
-
sediments
-
carbonate sediments (1)
-
clastic sediments
-
drift (1)
-
gravel (1)
-
sand (1)
-
till (1)
-
-
marine sediments (10)
-
-
turbidite (1)
-
volcaniclastics (1)
-
GeoRef Categories
Era and Period
Epoch and Age
Book Series
Date
Availability
Grand Banks
Review and tectonic interpretation of Precambrian Avalonia Available to Purchase
Abstract Avalonia, defined by its distinctive uppermost Ediacaran–Ordovician overstep sequence, extends from New England through Atlantic Canada to Wales. It unconformably overlies: (1) parts of one cratonic Neoproterozoic arc that which records several pulses at: 760–730 Ma, 680–600 Ma and 580–540 Ma; (2) an 800–760 Ma passive margin sequence; and (3) c. 976 Ma isolated plutons, possibly basement. Comparisons with modern arc dimensions suggest the dip of the Benioff Zone ranged from c. 22° W in Newfoundland to c. 52–67° elsewhere. A 600–580 Ma hiatus in arc magmatism in Cape Breton Island is attributed to overriding an oceanic plateau, leading to a 15° decrease in the dip of the Benioff Zone. The Collector magnetic anomaly along the Grand Banks and the Minas Fault is inferred to mark the Neoproterozoic southern margin of the Avalon Plate consisting of leaky transform faults and trench segments characterized by magnetite serpentinite mantle wedge beneath forearcs. The Minas Fault/Collector Anomaly connects similar arc units in Cape Breton Island and southern New Brunswick, suggesting that they were already offset by the Minas transform fault in the late Neoproterozoic. Similar tectonic, palaeomagnetic and isotopic data in the Timan Orogen of Baltica suggest that Avalonia may correlate with the Kipchak arc.
Provenance of Upper Jurassic to Lower Cretaceous synrift strata in the Terra Nova oil field, Jeanne d’Arc basin, offshore Newfoundland: A new detrital zircon U-Pb-Hf reference frame for the Atlantic Canadian margin Available to Purchase
Effects of rotational submarine slump dynamics on tsunami genesis: new insight from idealized models and the 1929 Grand Banks event Open Access
Abstract Sediment slumps are known to have generated important tsunamis such as the 1998 Papua New Guinea (PNG) and the 1929 Grand Banks events. Tsunami modellers commonly use solid blocks with short run-out distances to simulate these slumps. While such methods have the obvious advantage of being simple to use, they offer little or no insight into physical processes that drive the events. The importance of rotational slump motion to tsunamigenic potential is demonstrated in this study by employing a viscoplastic landslide model with Herschel–Bulkley rheology. A large number of simulations for different material properties and landslide configurations are carried out to link the slump's deformation, rheology, its translational and rotational kinematics, to its tsunami genesis. The yield strength of the slump is shown to be the primary material property that determines the tsunami genesis. This viscoplastic model is further employed to simulate the 1929 Grand Banks tsunami using updated geological source information. The results of this case study suggest that the viscoplastic model can be used to simulate complex slump-induced tsunami. The simulations of the 1929 Grand Banks event also indicate that a pure slump mechanism is more tsunamigenic than a corresponding translational landslide mechanism.
Conjugate margins — An oversimplification of the complex southern North Atlantic rift and spreading system? Available to Purchase
Modelling the 1929 Grand Banks slump and landslide tsunami Open Access
Abstract On 18 November 1929, an M w 7.2 earthquake occurred south of Newfoundland, displacing >100 km 3 of sediment volume that evolved into a turbidity current. The resulting tsunami was recorded across the Atlantic and caused fatalities in Newfoundland. This tsunami is attributed to sediment mass failure because no seafloor displacement due to the earthquake has been observed. No major headscarp, single evacuation area nor large mass transport deposit has been observed and it is still unclear how the tsunami was generated. There have been few previous attempts to model the tsunami and none of these match the observations. Recently acquired seismic reflection data suggest that rotational slumping of a thick sediment mass may have occurred, causing seafloor displacements up to 100 m in height. We used this new information to construct a tsunamigenic slump source and also carried out simulations assuming a translational landslide. The slump source produced sufficiently large waves to explain the high tsunami run-ups observed in Newfoundland and the translational landslide was needed to explain the long waves observed in the far field. However, more analysis is needed to derive a coherent model that more closely combines geological and geophysical observations with landslide and tsunami modelling.
Structural and stratigraphic evolution of the Iberia–Newfoundland hyper-extended rifted margin: a quantitative modelling approach Available to Purchase
Abstract We investigate the evolution of the Iberia–Newfoundland margin from Permian post-orogenic extension to Early Cretaceous break-up. We used a Quantitative Basin Analysis approach to integrate seismic stratigraphic interpretations and drill-hole data of two representative sections across the Iberia–Newfoundland margin with kinematic models for lithospheric thinning and subsequent flexural readjustment. We model the distribution of extension and thinning, palaeobathymetry, crustal structure, and subsidence and uplift history as functions of space and time. We start our modelling following post-orogenic extension, magmatic underplating and thermal re-equilibration of the Permian lithosphere. During the Late Triassic–Early Jurassic, broadly distributed, depth-independent lithospheric extension evolved into Late Jurassic–Early Cretaceous depth-dependent thinning as crustal extension progressed from distributed to focused deformation. During this time, palaeobathymetries rapidly deepened across the margin. Modelling of the southern and northern profiles highlighted the rapid development of crustal deformation from south to north over a 5–10 myr period, which accounts for the rapid change in Tithonian–Valanginian, deep- to shallow-water sedimentary facies between the Abyssal Plain and the adjacent Galicia Bank, respectively. Late-stage deformation of both margins was characterized by brittle deformation of the remaining continental crust, which led to exhumation of subcontinental mantle and, eventually, continental break-up and seafloor spreading.
A Late Jurassic Play Fairway Beyond the Jeanne d’Arc Basin: New Insights for a Petroleum System in the Northern Flemish Pass Basin Available to Purchase
Abstract The Grand Banks of Newfoundland is a broad continental shelf that extends 450 km into the North Atlantic Ocean. A sequence of Mesozoic rift-events and subsequent break-ups associated with the North Atlantic rift are recorded in a series of complex basins. From the onset of exploration in the 1960’s, regional exploration on the Grand Banks has been primarily focused on the Early Cretaceous Ben Nevis and Hibernia formations shallow marine sandstone reservoirs. This early phase of exploration resulted in the discovery of the Hibernia, White Rose, and Hebron fields in the southern Jeanne d’Arc Basin. Collectively, these fields contain approximately 2.5 billion barrels of oil resources. The Terra Nova Field in the southern Jeanne d’Arc basin is the exception to this Early Cretaceous play trend, producing from Late Jurassic braided fluvial reservoirs (Jeanne d’Arc Formation) and contains approximately 500 million barrels of oil resources. This presentation is focused on recognizing and delineating a now proven petroleum system in the North Flemish Pass basin.