- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Africa
-
Nile Valley (1)
-
North Africa
-
Egypt (1)
-
-
-
Antarctica (1)
-
Atlantic Ocean
-
North Atlantic
-
Bay of Biscay (1)
-
-
South Atlantic (1)
-
-
Europe
-
Alps (1)
-
Central Europe
-
Austria (1)
-
Germany
-
Bavaria Germany
-
Ries Crater (1)
-
-
-
Hungary (1)
-
-
Pannonian Basin (1)
-
Southern Europe
-
Croatia (1)
-
Iberian Peninsula
-
Spain (1)
-
-
Romania (1)
-
-
Western Europe
-
France
-
Hautes-Alpes France (1)
-
-
United Kingdom
-
Great Britain
-
England
-
Kent England (1)
-
-
-
-
-
-
North America
-
Appalachian Basin (1)
-
-
Pacific Ocean
-
South Pacific
-
Southwest Pacific (1)
-
-
West Pacific
-
Ontong Java Plateau (1)
-
Southwest Pacific (1)
-
-
-
Seymour Island (1)
-
United States
-
Chesapeake Bay (1)
-
Maryland
-
Calvert County Maryland (1)
-
Saint Mary's County Maryland (1)
-
-
Montana
-
Garfield County Montana (1)
-
-
Texas
-
Tarrant County Texas
-
Fort Worth Texas (1)
-
-
-
-
-
elements, isotopes
-
carbon
-
C-13/C-12 (2)
-
-
isotope ratios (2)
-
isotopes
-
stable isotopes
-
C-13/C-12 (2)
-
O-18/O-16 (2)
-
-
-
metals
-
platinum group
-
iridium (2)
-
-
-
oxygen
-
O-18/O-16 (2)
-
-
-
fossils
-
Chordata
-
Vertebrata
-
Pisces (1)
-
Tetrapoda
-
Mammalia
-
Theria
-
Eutheria
-
Chiroptera (1)
-
Rodentia
-
Myomorpha
-
Arvicolidae (1)
-
Muridae (1)
-
-
-
-
-
-
Reptilia
-
Diapsida
-
Archosauria
-
dinosaurs (2)
-
-
-
Synapsida
-
Pelycosauria (1)
-
-
-
-
-
-
Graptolithina (1)
-
Invertebrata
-
Brachiopoda (1)
-
Cnidaria
-
Anthozoa (1)
-
-
Mollusca
-
Bivalvia
-
Heterodonta
-
Veneroida (1)
-
-
Ostreoidea
-
Gryphaea (1)
-
-
Pterioida
-
Pteriina
-
Inocerami
-
Inoceramidae (1)
-
-
-
-
-
Cephalopoda
-
Ammonoidea (2)
-
-
-
Protista
-
Foraminifera
-
Rotaliina
-
Cassidulinacea
-
Anomalinidae
-
Cibicidoides (1)
-
-
-
Globigerinacea
-
Globorotaliidae
-
Globorotalia
-
Globorotalia inflata (1)
-
-
-
-
Orbitoidacea
-
Cibicides (1)
-
-
Rotaliacea
-
Nummulitidae (1)
-
-
-
-
-
-
microfossils
-
Conodonta (1)
-
-
Plantae
-
algae
-
nannofossils (1)
-
-
-
-
geologic age
-
Cenozoic
-
Quaternary
-
Holocene (1)
-
Pleistocene (1)
-
-
Tertiary
-
Neogene
-
Miocene
-
upper Miocene
-
Pannonian (1)
-
-
-
Pliocene (5)
-
upper Neogene (1)
-
-
Paleogene
-
Eocene
-
lower Eocene
-
Cuisian (1)
-
-
-
Paleocene
-
lower Paleocene
-
K-T boundary (3)
-
-
-
-
-
upper Cenozoic
-
Chesapeake Group (1)
-
-
-
Mesozoic
-
Cretaceous
-
Lower Cretaceous
-
Albian
-
upper Albian (1)
-
-
Gault Clay (1)
-
-
Upper Cretaceous
-
Campanian (1)
-
Hell Creek Formation (1)
-
K-T boundary (3)
-
Santonian (1)
-
Senonian (1)
-
-
-
Jurassic
-
Lower Jurassic
-
lower Liassic (1)
-
Sinemurian (1)
-
-
-
-
Paleozoic
-
Carboniferous
-
Pennsylvanian
-
Lower Pennsylvanian (1)
-
-
-
Devonian
-
Middle Devonian
-
Hamilton Group (1)
-
-
-
Permian
-
Upper Permian (1)
-
-
Silurian (1)
-
-
-
minerals
-
silicates
-
sheet silicates
-
mica group
-
glauconite (1)
-
-
-
-
-
Primary terms
-
Africa
-
Nile Valley (1)
-
North Africa
-
Egypt (1)
-
-
-
Antarctica (1)
-
Atlantic Ocean
-
North Atlantic
-
Bay of Biscay (1)
-
-
South Atlantic (1)
-
-
biogeography (1)
-
carbon
-
C-13/C-12 (2)
-
-
Cenozoic
-
Quaternary
-
Holocene (1)
-
Pleistocene (1)
-
-
Tertiary
-
Neogene
-
Miocene
-
upper Miocene
-
Pannonian (1)
-
-
-
Pliocene (5)
-
upper Neogene (1)
-
-
Paleogene
-
Eocene
-
lower Eocene
-
Cuisian (1)
-
-
-
Paleocene
-
lower Paleocene
-
K-T boundary (3)
-
-
-
-
-
upper Cenozoic
-
Chesapeake Group (1)
-
-
-
Chordata
-
Vertebrata
-
Pisces (1)
-
Tetrapoda
-
Mammalia
-
Theria
-
Eutheria
-
Chiroptera (1)
-
Rodentia
-
Myomorpha
-
Arvicolidae (1)
-
Muridae (1)
-
-
-
-
-
-
Reptilia
-
Diapsida
-
Archosauria
-
dinosaurs (2)
-
-
-
Synapsida
-
Pelycosauria (1)
-
-
-
-
-
-
data processing (2)
-
Deep Sea Drilling Project
-
IPOD
-
Leg 90
-
DSDP Site 593 (1)
-
-
-
-
Europe
-
Alps (1)
-
Central Europe
-
Austria (1)
-
Germany
-
Bavaria Germany
-
Ries Crater (1)
-
-
-
Hungary (1)
-
-
Pannonian Basin (1)
-
Southern Europe
-
Croatia (1)
-
Iberian Peninsula
-
Spain (1)
-
-
Romania (1)
-
-
Western Europe
-
France
-
Hautes-Alpes France (1)
-
-
United Kingdom
-
Great Britain
-
England
-
Kent England (1)
-
-
-
-
-
-
Graptolithina (1)
-
Invertebrata
-
Brachiopoda (1)
-
Cnidaria
-
Anthozoa (1)
-
-
Mollusca
-
Bivalvia
-
Heterodonta
-
Veneroida (1)
-
-
Ostreoidea
-
Gryphaea (1)
-
-
Pterioida
-
Pteriina
-
Inocerami
-
Inoceramidae (1)
-
-
-
-
-
Cephalopoda
-
Ammonoidea (2)
-
-
-
Protista
-
Foraminifera
-
Rotaliina
-
Cassidulinacea
-
Anomalinidae
-
Cibicidoides (1)
-
-
-
Globigerinacea
-
Globorotaliidae
-
Globorotalia
-
Globorotalia inflata (1)
-
-
-
-
Orbitoidacea
-
Cibicides (1)
-
-
Rotaliacea
-
Nummulitidae (1)
-
-
-
-
-
-
isotopes
-
stable isotopes
-
C-13/C-12 (2)
-
O-18/O-16 (2)
-
-
-
Mesozoic
-
Cretaceous
-
Lower Cretaceous
-
Albian
-
upper Albian (1)
-
-
Gault Clay (1)
-
-
Upper Cretaceous
-
Campanian (1)
-
Hell Creek Formation (1)
-
K-T boundary (3)
-
Santonian (1)
-
Senonian (1)
-
-
-
Jurassic
-
Lower Jurassic
-
lower Liassic (1)
-
Sinemurian (1)
-
-
-
-
metals
-
platinum group
-
iridium (2)
-
-
-
North America
-
Appalachian Basin (1)
-
-
Ocean Drilling Program
-
Leg 130
-
ODP Site 806 (1)
-
-
-
oxygen
-
O-18/O-16 (2)
-
-
Pacific Ocean
-
South Pacific
-
Southwest Pacific (1)
-
-
West Pacific
-
Ontong Java Plateau (1)
-
Southwest Pacific (1)
-
-
-
paleoclimatology (1)
-
paleoecology (3)
-
paleontology (14)
-
Paleozoic
-
Carboniferous
-
Pennsylvanian
-
Lower Pennsylvanian (1)
-
-
-
Devonian
-
Middle Devonian
-
Hamilton Group (1)
-
-
-
Permian
-
Upper Permian (1)
-
-
Silurian (1)
-
-
Plantae
-
algae
-
nannofossils (1)
-
-
-
sea-level changes (1)
-
stratigraphy (1)
-
tectonics (1)
-
United States
-
Chesapeake Bay (1)
-
Maryland
-
Calvert County Maryland (1)
-
Saint Mary's County Maryland (1)
-
-
Montana
-
Garfield County Montana (1)
-
-
Texas
-
Tarrant County Texas
-
Fort Worth Texas (1)
-
-
-
-
-
rock formations
-
Lopez de Bertodano Formation (1)
-
gradualism
A GENTLE GRADUALIST IN A CATASTROPHISTS’ WORLD: REINHOLD SEEMANN’S TECTONIC THEORY OF RIES IMPACT CRATER (GERMANY)
The geological extinction record: History, data, biases, and testing
The geological record represents the only source of data available for documenting long-term historical patterns of extinction intensity and extinction susceptibility. Such data are critical for testing hypotheses of extinction causality in the modern world as well as in deep time. The study of extinction is relatively new. Prior to 1800, extinctions were not accepted as a feature of the natural environment. Even after extinctions were recognized to have occurred in Earth's geological past, they were deemed to have played a minor role in mediating evolutionary processes until the 1950s. Global extinction events are now recognized as having been a recurring feature of the history of life and to have played an important role in promoting biotic diversification. Interpretation of the geological extinction record is rendered complex as a result of several biasing factors that have to do with the spatial and temporal resolutions at which the data used to study extinctions have been recorded: fluctuations in sediment accumulation rates, the presence of hiatuses in the stratigraphic sections/cores from which fossils are collected, and variation in the volumes of sediments that can be searched for fossils of different ages. The action of these factors conspires to render the temporal and geographic records of fossil occurrences incomplete in many local stratigraphic sections and cores. In some cases, these stratigraphic and sampling uncertainties can be quantified and taken into account in interpretations of that record. However, their effects can never be eliminated entirely. Testing hypotheses of global extinction causality requires acknowledgment of the uncertainties inherent in extinction data, the search for unique predictions of historical patterns of variation or associations that can, in principle, be preserved in the fossil record and tied logically to the operation of specific causal processes, and to adoption of an explicitly comparative approach that establishes the presence of multiple instances of the predicted cause-effect couplets within a well-documented chronostratigraphic context.