- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Africa
-
East Africa
-
Kenya (2)
-
Lake Turkana (1)
-
-
East African Lakes
-
Lake Turkana (1)
-
-
North Africa
-
Tunisia
-
El Kef Tunisia (1)
-
-
-
Southern Africa
-
South Africa (1)
-
-
-
Antarctica
-
Antarctic Peninsula (1)
-
-
Arctic region
-
Svalbard
-
Spitsbergen (1)
-
-
-
Asia
-
Far East
-
China (4)
-
Laos (1)
-
-
Indian Peninsula
-
India
-
Andhra Pradesh India (1)
-
Chhattisgarh India (1)
-
Gujarat India (1)
-
Madhya Pradesh India (1)
-
Maharashtra India (1)
-
Narmada Valley (1)
-
-
-
Southeast Asia (1)
-
-
Atlantic Ocean
-
North Atlantic
-
Bay of Biscay (2)
-
-
-
Atlantic Ocean Islands
-
Bermuda (1)
-
-
Australasia
-
Australia (1)
-
New Zealand (2)
-
-
Canada
-
Eastern Canada
-
Maritime Provinces
-
Nova Scotia (2)
-
-
-
Western Canada
-
Alberta
-
Dinosaur Provincial Park (1)
-
-
-
-
Caribbean region
-
West Indies
-
Antilles
-
Greater Antilles
-
Hispaniola
-
Dominican Republic (2)
-
-
-
Lesser Antilles
-
Virgin Islands
-
U. S. Virgin Islands
-
Saint Croix (2)
-
-
-
-
-
Bahamas (1)
-
-
-
Chicxulub Crater (1)
-
Commonwealth of Independent States
-
Russian Federation (1)
-
Ukraine
-
Boltyshka Depression (1)
-
-
-
Europe
-
Karst region (1)
-
Southern Europe
-
Italy
-
Friuli-Venezia Giulia Italy
-
Trieste Italy (1)
-
-
-
-
Ukraine
-
Boltyshka Depression (1)
-
-
Western Europe
-
France
-
Allier France (1)
-
Central Massif (1)
-
-
United Kingdom
-
Great Britain
-
England (1)
-
Scotland
-
Hebrides
-
Inner Hebrides
-
Isle of Skye (1)
-
-
-
Highland region Scotland
-
Inverness-shire Scotland
-
Isle of Skye (1)
-
-
-
-
Wales (1)
-
-
-
-
-
Indian Ocean
-
Arabian Sea
-
Persian Gulf (1)
-
-
-
Mediterranean Sea
-
East Mediterranean
-
Adriatic Sea (1)
-
-
-
Mexico
-
Baja California (1)
-
Tabasco Mexico (1)
-
-
North America
-
Appalachian Basin (2)
-
Western Interior (1)
-
-
Pacific Ocean
-
South Pacific (1)
-
West Pacific
-
Sunda Shelf (1)
-
-
-
San Salvador (1)
-
Seymour Island (4)
-
South America
-
Brazil (2)
-
Peru (1)
-
-
United States
-
Atlantic Coastal Plain (2)
-
California (2)
-
Colorado (1)
-
Delaware
-
Sussex County Delaware
-
Bethany Beach Delaware (1)
-
-
-
Illinois Basin (1)
-
Iowa
-
Johnson County Iowa (1)
-
-
Kansas (1)
-
Maryland
-
Anne Arundel County Maryland (1)
-
-
Montana
-
Garfield County Montana (2)
-
McCone County Montana (1)
-
-
Nebraska (1)
-
New Mexico (1)
-
New York (1)
-
North Carolina
-
Carteret County North Carolina (1)
-
-
Ohio (1)
-
Oklahoma (2)
-
Pennsylvania (1)
-
South Dakota (1)
-
Texas
-
Brazos River (1)
-
-
Utah (1)
-
Virginia
-
Giles County Virginia (1)
-
-
West Virginia (1)
-
-
West Pacific Ocean Islands
-
Bonin Islands (1)
-
Chatham Islands (1)
-
-
-
elements, isotopes
-
carbon
-
C-13 (2)
-
C-13/C-12 (4)
-
C-14 (1)
-
organic carbon (1)
-
-
isotope ratios (5)
-
isotopes
-
radioactive isotopes
-
C-14 (1)
-
-
stable isotopes
-
C-13 (2)
-
C-13/C-12 (4)
-
O-18/O-16 (3)
-
S-34/S-32 (1)
-
Sr-87/Sr-86 (1)
-
-
-
metals
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (1)
-
-
-
gold (1)
-
platinum group
-
iridium (3)
-
osmium (1)
-
platinum (1)
-
-
-
oxygen
-
O-18/O-16 (3)
-
-
phosphorus (1)
-
sulfur
-
S-34/S-32 (1)
-
-
-
fossils
-
bacteria
-
coliform bacteria
-
Escherichia
-
Escherichia coli (1)
-
-
-
-
borings (1)
-
burrows (3)
-
Chordata
-
Vertebrata
-
Pisces
-
Chondrichthyes
-
Elasmobranchii
-
Neoselachii (2)
-
-
-
-
Tetrapoda
-
Amphibia (1)
-
Aves (3)
-
Mammalia
-
Theria
-
Eutheria
-
Artiodactyla
-
Ruminantia (1)
-
-
Proboscidea
-
Elephantoidea
-
Elephantidae
-
Elephas (1)
-
Stegodon (1)
-
-
-
-
Rodentia
-
Castoridae (1)
-
-
-
-
-
Reptilia
-
Anapsida
-
Testudines (1)
-
-
Diapsida
-
Archosauria
-
Crocodilia (1)
-
dinosaurs
-
Ornithischia
-
Ankylosauria (1)
-
Ceratopsia
-
Ceratopsidae
-
Triceratops (1)
-
-
-
Ornithopoda
-
Hadrosauridae (1)
-
-
-
Saurischia
-
Sauropodomorpha
-
Sauropoda (1)
-
-
Theropoda
-
Coelurosauria
-
Dromaeosauridae (1)
-
Tyrannosauridae (1)
-
-
-
-
-
Pterosauria
-
Pteranodon (1)
-
-
-
Lepidosauria (1)
-
-
Synapsida
-
Therapsida
-
Dicynodontia (1)
-
-
-
Testudinata (1)
-
-
-
-
-
coprolites (2)
-
cyanobacteria (2)
-
Cyclostomata (1)
-
ichnofossils (4)
-
Invertebrata
-
Arthropoda
-
Chelicerata
-
Arachnida (1)
-
-
Mandibulata
-
Crustacea
-
Branchiopoda (1)
-
-
Insecta
-
Pterygota
-
Neoptera
-
Endopterygota
-
Lepidoptera (1)
-
-
-
-
-
-
Trilobitomorpha
-
Trilobita (5)
-
-
-
Brachiopoda
-
Articulata
-
Spiriferida
-
Atrypidae (1)
-
-
-
Inarticulata
-
Lingula (1)
-
-
-
Bryozoa
-
Cheilostomata (1)
-
Ctenostomata (1)
-
-
Cnidaria
-
Anthozoa (2)
-
-
Echinodermata
-
Crinozoa
-
Crinoidea (1)
-
-
Echinozoa
-
Echinoidea (3)
-
-
-
Mollusca
-
Bivalvia
-
Heterodonta
-
Veneroida
-
Veneridae
-
Mercenaria (1)
-
-
-
-
Ostreoidea
-
Ostreidae
-
Crassostrea
-
Crassostrea virginica (1)
-
-
-
-
-
Cephalopoda
-
Ammonoidea
-
Ammonites (1)
-
Scaphites (1)
-
-
Coleoidea (1)
-
Nautiloidea
-
Nautilus (1)
-
-
-
Gastropoda
-
Archaeogastropoda (1)
-
-
Scaphopoda (1)
-
-
Porifera (1)
-
Protista
-
Foraminifera
-
Rotaliina
-
Globigerinacea
-
Globigerinidae (1)
-
-
-
-
Radiolaria (1)
-
-
Vermes
-
Annelida (1)
-
-
-
Metazoa (2)
-
microfossils (11)
-
palynomorphs
-
acritarchs (2)
-
Dinoflagellata (2)
-
-
Plantae
-
algae
-
Coccolithophoraceae (1)
-
diatoms (1)
-
-
Pteridophyta
-
Filicopsida
-
Gleicheniaceae (1)
-
-
Lycopsida (2)
-
Sphenopsida
-
Equisetales
-
Calamites (1)
-
-
-
-
Spermatophyta
-
Angiospermae
-
Dicotyledoneae
-
Myrica (1)
-
Nothofagus (1)
-
Rosidae (1)
-
-
-
Gymnospermae
-
Coniferae (1)
-
Coniferales (1)
-
Cordaitales (1)
-
Pteridospermae (1)
-
-
-
-
problematic fossils (1)
-
thallophytes (1)
-
-
geologic age
-
Cenozoic
-
lower Cenozoic (1)
-
Quaternary
-
Holocene (5)
-
Pleistocene
-
lower Pleistocene (1)
-
middle Pleistocene (1)
-
-
-
Tertiary
-
Neogene
-
Miocene
-
lower Miocene (1)
-
upper Miocene (1)
-
-
Pliocene (1)
-
-
Paleogene
-
Eocene
-
lower Eocene
-
Ypresian (2)
-
-
middle Eocene (1)
-
upper Eocene
-
La Meseta Formation (1)
-
-
-
Oligocene (2)
-
Paleocene
-
lower Paleocene
-
K-T boundary (11)
-
-
middle Paleocene (1)
-
-
-
-
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous
-
Campanian
-
upper Campanian (2)
-
-
Fox Hills Formation (1)
-
Hell Creek Formation (3)
-
Horseshoe Canyon Formation (1)
-
Judith River Formation (1)
-
K-T boundary (11)
-
Lameta Formation (1)
-
Lance Formation (1)
-
Maestrichtian (2)
-
Rock Springs Formation (1)
-
Santonian (1)
-
Senonian (2)
-
-
-
Jurassic
-
Lower Jurassic (1)
-
Middle Jurassic
-
Bajocian (1)
-
Bathonian (1)
-
Callovian (2)
-
-
-
lower Mesozoic (1)
-
Triassic
-
Lower Triassic
-
Permian-Triassic boundary (1)
-
-
Upper Triassic
-
Rhaetian (1)
-
-
-
-
Paleozoic
-
Cambrian
-
Lower Cambrian
-
Tommotian (1)
-
-
Upper Cambrian (2)
-
-
Carboniferous
-
Pennsylvanian
-
Cumberland Group (1)
-
Herrin Coal Member (1)
-
Joggins Formation (1)
-
-
-
Devonian
-
Middle Devonian
-
Givetian (1)
-
-
Upper Devonian (1)
-
-
Ordovician
-
Lower Ordovician (1)
-
Meguma Group (1)
-
-
Permian
-
Lower Permian (1)
-
Middle Permian (1)
-
Upper Permian
-
Permian-Triassic boundary (1)
-
-
-
Silurian (1)
-
-
Phanerozoic (24)
-
Precambrian
-
upper Precambrian
-
Proterozoic
-
Neoproterozoic
-
Ediacaran (1)
-
Riphean (1)
-
Vendian (2)
-
-
-
-
-
-
minerals
-
carbonates
-
dolomite (1)
-
-
phosphates (1)
-
silicates
-
sheet silicates
-
mica group
-
glauconite (1)
-
-
-
-
-
Primary terms
-
absolute age (2)
-
Africa
-
East Africa
-
Kenya (2)
-
Lake Turkana (1)
-
-
East African Lakes
-
Lake Turkana (1)
-
-
North Africa
-
Tunisia
-
El Kef Tunisia (1)
-
-
-
Southern Africa
-
South Africa (1)
-
-
-
Antarctica
-
Antarctic Peninsula (1)
-
-
Arctic region
-
Svalbard
-
Spitsbergen (1)
-
-
-
Asia
-
Far East
-
China (4)
-
Laos (1)
-
-
Indian Peninsula
-
India
-
Andhra Pradesh India (1)
-
Chhattisgarh India (1)
-
Gujarat India (1)
-
Madhya Pradesh India (1)
-
Maharashtra India (1)
-
Narmada Valley (1)
-
-
-
Southeast Asia (1)
-
-
Atlantic Ocean
-
North Atlantic
-
Bay of Biscay (2)
-
-
-
Atlantic Ocean Islands
-
Bermuda (1)
-
-
atmosphere (2)
-
Australasia
-
Australia (1)
-
New Zealand (2)
-
-
bacteria
-
coliform bacteria
-
Escherichia
-
Escherichia coli (1)
-
-
-
-
biogeography (13)
-
Canada
-
Eastern Canada
-
Maritime Provinces
-
Nova Scotia (2)
-
-
-
Western Canada
-
Alberta
-
Dinosaur Provincial Park (1)
-
-
-
-
carbon
-
C-13 (2)
-
C-13/C-12 (4)
-
C-14 (1)
-
organic carbon (1)
-
-
Caribbean region
-
West Indies
-
Antilles
-
Greater Antilles
-
Hispaniola
-
Dominican Republic (2)
-
-
-
Lesser Antilles
-
Virgin Islands
-
U. S. Virgin Islands
-
Saint Croix (2)
-
-
-
-
-
Bahamas (1)
-
-
-
Cenozoic
-
lower Cenozoic (1)
-
Quaternary
-
Holocene (5)
-
Pleistocene
-
lower Pleistocene (1)
-
middle Pleistocene (1)
-
-
-
Tertiary
-
Neogene
-
Miocene
-
lower Miocene (1)
-
upper Miocene (1)
-
-
Pliocene (1)
-
-
Paleogene
-
Eocene
-
lower Eocene
-
Ypresian (2)
-
-
middle Eocene (1)
-
upper Eocene
-
La Meseta Formation (1)
-
-
-
Oligocene (2)
-
Paleocene
-
lower Paleocene
-
K-T boundary (11)
-
-
middle Paleocene (1)
-
-
-
-
-
Chordata
-
Vertebrata
-
Pisces
-
Chondrichthyes
-
Elasmobranchii
-
Neoselachii (2)
-
-
-
-
Tetrapoda
-
Amphibia (1)
-
Aves (3)
-
Mammalia
-
Theria
-
Eutheria
-
Artiodactyla
-
Ruminantia (1)
-
-
Proboscidea
-
Elephantoidea
-
Elephantidae
-
Elephas (1)
-
Stegodon (1)
-
-
-
-
Rodentia
-
Castoridae (1)
-
-
-
-
-
Reptilia
-
Anapsida
-
Testudines (1)
-
-
Diapsida
-
Archosauria
-
Crocodilia (1)
-
dinosaurs
-
Ornithischia
-
Ankylosauria (1)
-
Ceratopsia
-
Ceratopsidae
-
Triceratops (1)
-
-
-
Ornithopoda
-
Hadrosauridae (1)
-
-
-
Saurischia
-
Sauropodomorpha
-
Sauropoda (1)
-
-
Theropoda
-
Coelurosauria
-
Dromaeosauridae (1)
-
Tyrannosauridae (1)
-
-
-
-
-
Pterosauria
-
Pteranodon (1)
-
-
-
Lepidosauria (1)
-
-
Synapsida
-
Therapsida
-
Dicynodontia (1)
-
-
-
Testudinata (1)
-
-
-
-
-
climate change (1)
-
conservation (1)
-
continental drift (1)
-
coprolites (2)
-
data processing (13)
-
Deep Sea Drilling Project
-
IPOD
-
Leg 62
-
DSDP Site 465 (1)
-
-
-
Leg 43
-
DSDP Site 384 (1)
-
-
-
diagenesis (1)
-
Earth (1)
-
ecology (2)
-
education (2)
-
Europe
-
Karst region (1)
-
Southern Europe
-
Italy
-
Friuli-Venezia Giulia Italy
-
Trieste Italy (1)
-
-
-
-
Ukraine
-
Boltyshka Depression (1)
-
-
Western Europe
-
France
-
Allier France (1)
-
Central Massif (1)
-
-
United Kingdom
-
Great Britain
-
England (1)
-
Scotland
-
Hebrides
-
Inner Hebrides
-
Isle of Skye (1)
-
-
-
Highland region Scotland
-
Inverness-shire Scotland
-
Isle of Skye (1)
-
-
-
-
Wales (1)
-
-
-
-
-
geology (2)
-
ichnofossils (4)
-
Indian Ocean
-
Arabian Sea
-
Persian Gulf (1)
-
-
-
Invertebrata
-
Arthropoda
-
Chelicerata
-
Arachnida (1)
-
-
Mandibulata
-
Crustacea
-
Branchiopoda (1)
-
-
Insecta
-
Pterygota
-
Neoptera
-
Endopterygota
-
Lepidoptera (1)
-
-
-
-
-
-
Trilobitomorpha
-
Trilobita (5)
-
-
-
Brachiopoda
-
Articulata
-
Spiriferida
-
Atrypidae (1)
-
-
-
Inarticulata
-
Lingula (1)
-
-
-
Bryozoa
-
Cheilostomata (1)
-
Ctenostomata (1)
-
-
Cnidaria
-
Anthozoa (2)
-
-
Echinodermata
-
Crinozoa
-
Crinoidea (1)
-
-
Echinozoa
-
Echinoidea (3)
-
-
-
Mollusca
-
Bivalvia
-
Heterodonta
-
Veneroida
-
Veneridae
-
Mercenaria (1)
-
-
-
-
Ostreoidea
-
Ostreidae
-
Crassostrea
-
Crassostrea virginica (1)
-
-
-
-
-
Cephalopoda
-
Ammonoidea
-
Ammonites (1)
-
Scaphites (1)
-
-
Coleoidea (1)
-
Nautiloidea
-
Nautilus (1)
-
-
-
Gastropoda
-
Archaeogastropoda (1)
-
-
Scaphopoda (1)
-
-
Porifera (1)
-
Protista
-
Foraminifera
-
Rotaliina
-
Globigerinacea
-
Globigerinidae (1)
-
-
-
-
Radiolaria (1)
-
-
Vermes
-
Annelida (1)
-
-
-
isotopes
-
radioactive isotopes
-
C-14 (1)
-
-
stable isotopes
-
C-13 (2)
-
C-13/C-12 (4)
-
O-18/O-16 (3)
-
S-34/S-32 (1)
-
Sr-87/Sr-86 (1)
-
-
-
land use (1)
-
Mediterranean Sea
-
East Mediterranean
-
Adriatic Sea (1)
-
-
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous
-
Campanian
-
upper Campanian (2)
-
-
Fox Hills Formation (1)
-
Hell Creek Formation (3)
-
Horseshoe Canyon Formation (1)
-
Judith River Formation (1)
-
K-T boundary (11)
-
Lameta Formation (1)
-
Lance Formation (1)
-
Maestrichtian (2)
-
Rock Springs Formation (1)
-
Santonian (1)
-
Senonian (2)
-
-
-
Jurassic
-
Lower Jurassic (1)
-
Middle Jurassic
-
Bajocian (1)
-
Bathonian (1)
-
Callovian (2)
-
-
-
lower Mesozoic (1)
-
Triassic
-
Lower Triassic
-
Permian-Triassic boundary (1)
-
-
Upper Triassic
-
Rhaetian (1)
-
-
-
-
metals
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (1)
-
-
-
gold (1)
-
platinum group
-
iridium (3)
-
osmium (1)
-
platinum (1)
-
-
-
Mexico
-
Baja California (1)
-
Tabasco Mexico (1)
-
-
museums (1)
-
North America
-
Appalachian Basin (2)
-
Western Interior (1)
-
-
ocean circulation (1)
-
Ocean Drilling Program
-
Leg 174AX (1)
-
-
oxygen
-
O-18/O-16 (3)
-
-
Pacific Ocean
-
South Pacific (1)
-
West Pacific
-
Sunda Shelf (1)
-
-
-
paleobotany (2)
-
paleoclimatology (3)
-
paleoecology (31)
-
paleogeography (3)
-
paleontology (24)
-
Paleozoic
-
Cambrian
-
Lower Cambrian
-
Tommotian (1)
-
-
Upper Cambrian (2)
-
-
Carboniferous
-
Pennsylvanian
-
Cumberland Group (1)
-
Herrin Coal Member (1)
-
Joggins Formation (1)
-
-
-
Devonian
-
Middle Devonian
-
Givetian (1)
-
-
Upper Devonian (1)
-
-
Ordovician
-
Lower Ordovician (1)
-
Meguma Group (1)
-
-
Permian
-
Lower Permian (1)
-
Middle Permian (1)
-
Upper Permian
-
Permian-Triassic boundary (1)
-
-
-
Silurian (1)
-
-
palynomorphs
-
acritarchs (2)
-
Dinoflagellata (2)
-
-
Phanerozoic (24)
-
phosphorus (1)
-
Plantae
-
algae
-
Coccolithophoraceae (1)
-
diatoms (1)
-
-
Pteridophyta
-
Filicopsida
-
Gleicheniaceae (1)
-
-
Lycopsida (2)
-
Sphenopsida
-
Equisetales
-
Calamites (1)
-
-
-
-
Spermatophyta
-
Angiospermae
-
Dicotyledoneae
-
Myrica (1)
-
Nothofagus (1)
-
Rosidae (1)
-
-
-
Gymnospermae
-
Coniferae (1)
-
Coniferales (1)
-
Cordaitales (1)
-
Pteridospermae (1)
-
-
-
-
plate tectonics (2)
-
Precambrian
-
upper Precambrian
-
Proterozoic
-
Neoproterozoic
-
Ediacaran (1)
-
Riphean (1)
-
Vendian (2)
-
-
-
-
-
problematic fossils (1)
-
reefs (2)
-
sea-level changes (6)
-
sedimentary rocks
-
carbonate rocks
-
chalk (1)
-
-
chemically precipitated rocks
-
iron formations (1)
-
-
coal (1)
-
oil shale (1)
-
-
sedimentary structures
-
biogenic structures
-
bioturbation (2)
-
stromatolites (1)
-
-
planar bedding structures (1)
-
-
sedimentation (1)
-
sediments
-
clastic sediments
-
dust (1)
-
-
-
soils (1)
-
South America
-
Brazil (2)
-
Peru (1)
-
-
stratigraphy (3)
-
structural analysis (1)
-
sulfur
-
S-34/S-32 (1)
-
-
tectonics (1)
-
thallophytes (1)
-
United States
-
Atlantic Coastal Plain (2)
-
California (2)
-
Colorado (1)
-
Delaware
-
Sussex County Delaware
-
Bethany Beach Delaware (1)
-
-
-
Illinois Basin (1)
-
Iowa
-
Johnson County Iowa (1)
-
-
Kansas (1)
-
Maryland
-
Anne Arundel County Maryland (1)
-
-
Montana
-
Garfield County Montana (2)
-
McCone County Montana (1)
-
-
Nebraska (1)
-
New Mexico (1)
-
New York (1)
-
North Carolina
-
Carteret County North Carolina (1)
-
-
Ohio (1)
-
Oklahoma (2)
-
Pennsylvania (1)
-
South Dakota (1)
-
Texas
-
Brazos River (1)
-
-
Utah (1)
-
Virginia
-
Giles County Virginia (1)
-
-
West Virginia (1)
-
-
weathering (2)
-
West Pacific Ocean Islands
-
Bonin Islands (1)
-
Chatham Islands (1)
-
-
-
rock formations
-
Deccan Traps (2)
-
Intertrappean Beds (1)
-
Lopez de Bertodano Formation (1)
-
-
sedimentary rocks
-
sedimentary rocks
-
carbonate rocks
-
chalk (1)
-
-
chemically precipitated rocks
-
iron formations (1)
-
-
coal (1)
-
oil shale (1)
-
-
-
sedimentary structures
-
borings (1)
-
burrows (3)
-
coprolites (2)
-
sedimentary structures
-
biogenic structures
-
bioturbation (2)
-
stromatolites (1)
-
-
planar bedding structures (1)
-
-
-
sediments
-
sediments
-
clastic sediments
-
dust (1)
-
-
-
-
soils
-
paleosols (1)
-
soils (1)
-
fossil record
The Pull of the Recent revisited: negligible species-level effect in a regional marine fossil record
Methanogen microfossils and methanogenesis in Permian lake deposits
ENVIRONMENTAL STRESS AND ITERATIVE PAEDOMORPHISM IN SHELLS OF POECILOZONITES (GASTROPODA: GASTRODONTIDAE) FROM BERMUDA
Bridging the two fossil records: Paleontology’s “big data” future resides in museum collections
ABSTRACT There are two fossil records: the physical fossil record , which consists of specimens, and the abstracted fossil record , which is made up of data derived from those specimens. Mseum collections are the conduit between these two fossil records. Over the past several decades, the abstracted fossil record has provided many important insights about the major features of life’s history, but it has relied mostly on limited types of data (primarily taxonomic occurrence data) derived from ultimately finite literature sources. In contrast, specimen collections and modern tools for digitizing information about them present an opportunity to transform paleobiology into a “big data” science. Digitally capturing non-traditional (e.g., paleoecological, taphonomic, geochemical, and morphological) data from millions of specimens in museum collections and then integrating them with other unique big data resources has the potential to lead to the most important paleontological discoveries of the twenty-first century. What we know about the past record relied heavily on museum collections—the cumulation of centuries of investigation of the fossil record. The sample of past biodiversity will accumulate only with continued exploration of the fossil record … and restudy of existing collections…. —J. Sepkoski (1992, p. 80)
The inseparability of sampling and time and its influence on attempts to unify the molecular and fossil records
Ion microprobe–measured stable isotope evidence for ammonite habitat and life mode during early ontogeny
SURVIVING IN THE WATER COLUMN: DEFINING THE TAPHONOMICALLY ACTIVE ZONE IN PELAGIC SYSTEMS
Abstract: Understanding the ecological roles of pterosaurs is a challenging pursuit, but one aided by a growing body of fossil evidence for their dietary preferences and roles as food sources for other species. Pterosaur foraging behaviour is represented by preserved gut content, stomach regurgitates, coprolites and feeding traces. Pterosaurs being eaten by other species are recorded by tooth marks and teeth embedded in their fossil bones, consumer gut content and regurgitate, and their preservation entangled with predatory animals. This palaeoecological record has improved in recent years, but remains highly selective. The Jurassic rhamphorhynchid Rhamphorhynchus , Cretaceous ornithocheiroid Pteranodon and azhdarchid pterosaurs currently have the most substantial palaeoecological records. The food species and consumers of these taxa conform to lifestyle predictions for these groups. Rhamphorhynchus and Pteranodon ate and were eaten by aquatic species, matching expectations of these animals as sea-going, perhaps partly aquatic species. Possible azhdarchid pterosaur foraging traces alongside pterosaur tracks, and evidence that these animals were eaten by dinosaurs and Crocodyliformes, are consistent with hypotheses that azhdarchids foraged and lived in terrestrial settings. Fossil evidence of pterosaur palaeoecology remains rare: researchers are strongly encouraged to put specimens showing details of dietary preferences, foraging strategies or interactions with other animals on record.
A wing metacarpal from Italy and its implications for latest Cretaceous pterosaur diversity
Abstract: An incomplete bone from the latest Cretaceous dinosaur site of Villaggio del Pescatore (Trieste Province, Italy) is definitely a wing metacarpal of a pterodactyloid pterosaur. It represents the only Italian Cretaceous pterosaur remains known, as well as the only pterosaur from the Adriatic Carbonate Platform. With an estimated minimum length of 136 mm, it belongs to a relatively small individual relative to the standard of latest Cretaceous pterodactyloids. It is not as elongated and gracile as azhdarchid wing metacarpals and shows a mix of features found in Pteranodon and some more basal pterodactyloids. It is one of the very few remains of putative non-azhdarchid pterosaurs from the upper Campanian–Maastrichtian worldwide and supports the view that the Azhdarchidae were not the only pterosaur clade existing during latest Cretaceous times.
A global review of Permian macrofloral biostratigraphical schemes
Abstract: Separate biostratigraphical schemes have been developed for Permian macrofloras in the five main phytochoria (palaeokingdoms), reflecting the essential lack of overlap in taxonomic composition. In Europe two biozones are normally recognized, in North America three zones, in Cathaysia three or four zones, in Gondwana four zones and in Angara five zones. The stratigraphical resolution tends to be far less than that of palynology, and up to an order of magnitude coarser than the macrofloral biozones of the Pennsylvanian subsystem. This is probably due, at least in part, to the lack of rigor in the way that the Permian macrofloral zones have been defined. Nevertheless, the existing zones do provide evidence of the overarching trajectory of change in vegetation through the Permian Period, as it responded at all palaeolatitudes to a combination of climate change, large-scale volcanic eruptions and tectonically driven landscape changes.
Permian tetrapod biochronology, correlation and evolutionary events
Abstract: The most extensive Permian tetrapod (amphibian and reptile) fossil records from the western USA (New Mexico to Texas) and South Africa have been used to define 11 land vertebrate faunachrons (LVFs). These are, in ascending order, the Coyotean, Seymouran, Mitchellcreekian, Redtankian, Littlecrotonian, Kapteinskraalian, Gamkan, Hoedemakeran, Steilkransian, Platbergian and Lootsbergian. These faunachrons provide a biochronological framework with which to assign ages to, and correlate, Permian tetrapod fossil assemblages. Intercalated marine strata, radioisotopic ages and magnetostratigraphy were used to correlate the Permian LVFs to the standard global chronostratigraphic scale with varying degrees of precision. Such correlations identified the following significant events in Permian tetrapod evolution: a Coyotean chronofaunal event (end Coyotean); Redtankian events (Mitchellcreekian–Littlecrotonian); Olson’s gap (late Littlecrotonian); a therapsid event (Kapteinskraalian); a dinocephalian extinction event (end Gamkan); and a latest Permian extinction event (Platbergian–Lootsbergian boundary). Problems of incompleteness, endemism and taxonomy, and the relative lack of non-biochronological age control continue to hinder the refinement and correlation of a Permian timescale based on tetrapod biochronology. Nevertheless, the global Permian timescale based on tetrapod biochronology is a robust tool for both global and regional age assignment and correlation. Advances in Permian tetrapod biochronology will come from new fossil discoveries, more detailed biostratigraphy and additional alpha taxonomic studies based on sound evolutionary taxonomic principles.
Structure, not Bias
Signal or noise? A null model method for evaluating the significance of turnover pulses
Can latitudinal richness gradients be measured in the terrestrial fossil record?
Assessing the completeness of the fossil record: comparison of different methods applied to parareptilian tetrapods (Vertebrata: Sauropsida)
Abstract The description of a partial but well-preserved head of the sclerorhynchid batoid Sclerorhynchus atavus Woodward, 1889 gave the first clear indication of the presence of a puzzling group of extinct rostrum-bearing rays that resembled both the Pristidae (rays) and the Pristophoridae (sharks). Despite recognizing similarities to and differences from these extant groups, Smith Woodward suggested that Sclerorhynchus be assigned to the Pristidae, although acknowledging that the rostra are very different. Smith Woodward did note similarities of Sclerorhynchus rostrum saw-teeth to those of the Pristiophoridae, including the location of these along the margin of the rostrum, rather than in deep sockets as seen along the pristid rostrum. In addition, the type specimen of Sclerorhynchus has not only very distinct saw-tooth denticles along the rostrum, but also modified denticles along the sides of the head, as in the Pristiophoridae. The enlarged rostral denticles of Sclerorhynchus also appear to rotate into position, another feature seen in the pristiophorids but not in the pristids nor in other sclerorhynchids such as Libanopristis . Although individual fossil rostral tooth-like denticles had been described earlier, Smith Woodward’s description of a rostrum and associated rostral tooth-like denticles meant that for the first time a fossil rostrum could be compared with living forms.
Abstract Fossils of post-Palaeozoic sharks and rays are common and well known, and have been extensively studied. Early studies, especially the monographic works of Agassiz and Smith Woodward, described species based on macroscopic remains of isolated teeth, fin spines and rostral ‘teeth’ as well as rare specimens of articulated skeletons and skulls. This material was obtained from a range of sources but especially from commercial collectors in Britain and mainland Europe. Additional research over subsequent decades also concentrated on large specimens, giving a very biased perception of the chondrichthyan record. The use of large-scale bulk sampling in the latter part of the twentieth century revealed a previously unknown wealth of small fossils, especially teeth, and vastly improved knowledge of ancient sharks and rays. Widening use of these techniques to obtain small specimens has led to a dramatic increase in the fossil taxa known. In addition, reassessment of previously known taxa has allowed generic diversity of some clades to be appreciated. Detailed work on skeletal anatomy, in part aided by new non-destructive methods, continues to improve knowledge of shark and ray diversity, phylogeny and radiation.