1-20 OF 177 RESULTS FOR

vittinkiite

Results shown limited to content with bounding coordinates.
Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Journal Article
Published: 25 September 2020
Mineralogical Magazine (2020) 84 (6): 869–880.
...) Mn 3 VII M (4) Mn[Si 5 O 15 ] (Roman numerals indicate coordination numbers) is defined as a valid mineral species named vittinkiite after the type locality Vittinki (Vittinge) mines, Isokyrö, Western and Inner Finland Region, Finland. Vittinkiite is an isostructural analogue of rhodonite, ideally...
FIGURES
First thumbnail for: <span class="search-highlight">Vittinkiite</span>,...
Second thumbnail for: <span class="search-highlight">Vittinkiite</span>,...
Third thumbnail for: <span class="search-highlight">Vittinkiite</span>,...
Journal Article
Published: 09 October 2019
Mineralogical Magazine (2019) 83 (6): 829–835.
...[Si 5 O 15 ], where A = Ca or Mn 2+ ; B = Mn 2+ ; and C = Mn 2+ or Fe 2+ . The end-member formulae of approved rhodonite-group minerals are as follows: rhodonite CaMn 3 Mn[Si 5 O 15 ]; ferrorhodonite CaMn 3 Fe[Si 5 O 15 ]; and vittinkiite MnMn 3 Mn[Si 5 O 15 ]. * Author for correspondence...
FIGURES
First thumbnail for: Crystal chemistry and nomenclature of rhodonite-gr...
Second thumbnail for: Crystal chemistry and nomenclature of rhodonite-gr...
Third thumbnail for: Crystal chemistry and nomenclature of rhodonite-gr...
Journal Article
Published: 10 August 2023
Mineralogical Magazine (2023) 87 (6): 935–942.
..., Shimohei District, Iwate Prefecture, Japan. It occurs as prismatic crystals up to 0.3 × 0.2 mm and their aggregates up to 1 mm intergrown with braunite, vittinkiite and quartz. Mangani-eckermannite is cherry-red to very dark red and reddish-brown in thicker grains. It is translucent with a pinkish white...
FIGURES
First thumbnail for: Mangani-eckermannite, NaNa 2 (Mg 4 Mn 3+ )Si 8 O 2...
Second thumbnail for: Mangani-eckermannite, NaNa 2 (Mg 4 Mn 3+ )Si 8 O 2...
Third thumbnail for: Mangani-eckermannite, NaNa 2 (Mg 4 Mn 3+ )Si 8 O 2...
Image
Rock consisting of vittinkiite (Vit), quartz (Q) and pyroxmangite (Pxm) from Vittinki (Vittinge) iron mines, Isokyrö, Finland (the holotype vittinkiite).
Published: 25 September 2020
Fig. 1. Rock consisting of vittinkiite (Vit), quartz (Q) and pyroxmangite (Pxm) from Vittinki (Vittinge) iron mines, Isokyrö, Finland (the holotype vittinkiite).
Image
Published: 25 September 2020
Table 3. Crystal data and refinement details for vittinkiite. Crystal data Formula Mn 5 Si 5 O 15 Temperature (K) 293 Crystal size (mm) 0.26 × 0.23 × 0.14 Crystal system Triclinic Space group P $\bar{1}$ a (Å) 6.6980(3) b (Å) 7.6203(3) c
Image
Сrystal structure of vittinkiite (a and b) and the fragment of polyhedral ribbon with marked sites (c). The Mn-centred (M) polyhedra are purple and Si-centred tetrahedra are yellow. Dashed lines contour the polyhedral slab (a) and polyhedral ribbon (b).
Published: 25 September 2020
Fig. 3. Сrystal structure of vittinkiite ( a and b ) and the fragment of polyhedral ribbon with marked sites ( c ). The Mn-centred ( M ) polyhedra are purple and Si-centred tetrahedra are yellow. Dashed lines contour the polyhedral slab ( a ) and polyhedral ribbon ( b ).
Image
Published: 25 September 2020
Table 1. Chemical composition of vittinkiite and representative earlier published analyses. Constituent Vittinki (Vittinge), Finland Bald Knob, North Carolina, USA Simsiö, Finland Taguchi, Aichi Pref., Japan Xanthi, Greece Malosedel'nikovskoe, deposit, Middle Urals, Russia
Image
Published: 25 September 2020
Table 3. Crystal data and refinement details for vittinkiite. Crystal data Formula Mn 5 Si 5 O 15 Temperature (K) 293 Crystal size (mm) 0.26 × 0.23 × 0.14 Crystal system Triclinic Space group P $\bar{1}$ a (Å) 6.6980(3) b (Å) 7.6203(3) c
Image
Published: 25 September 2020
Table 7. Comparative data for vittinkiite, pyroxmangite and four synthetic polymorphs of MnSiO 3 . Structural type Rhodonite* Pyroxmangite** Clinopyroxene Garnet Idealised formula VII( M 5) Mn VI( M 1–4) Mn 4 [ IV Si 5 O 15 ] VII( M 1–2) Mn VI( M 3–7) Mn 5 [ IV Si 7 O 21
Image
Published: 25 September 2020
Table 2. Chemical composition of vittinkiite from the collection of the Fersman Mineralogical Museum RAS, our data. Catalogue Holotype: Vittinki (Vittinge), Finland New England Range, New South Wales, Australia Ridder Mine, NW Altai, Kazakhstan Sultanuizdag, Uzbekistan Nozhiy
Image
Infrared absorption spectra of (a) the holotype vittinkiite and (b) rhodonite with the composition Ca0.9Mn3.7Mg0.4(Si5O15) from Långban, Sweden.
Published: 25 September 2020
Fig. 2. Infrared absorption spectra of ( a ) the holotype vittinkiite and ( b ) rhodonite with the composition Ca 0.9 Mn 3.7 Mg 0.4 (Si 5 O 15 ) from Långban, Sweden.
Image
Published: 25 September 2020
Table 7. Comparative data for vittinkiite, pyroxmangite and four synthetic polymorphs of MnSiO 3 . Structural type Rhodonite* Pyroxmangite** Clinopyroxene Garnet Idealised formula VII( M 5) Mn VI( M 1–4) Mn 4 [ IV Si 5 O 15 ] VII( M 1–2) Mn VI( M 3–7) Mn 5 [ IV Si 7 O 21
Image
Published: 25 September 2020
Table 7. Comparative data for vittinkiite, pyroxmangite and four synthetic polymorphs of MnSiO 3 . Structural type Rhodonite* Pyroxmangite** Clinopyroxene Garnet Idealised formula VII( M 5) Mn VI( M 1–4) Mn 4 [ IV Si 5 O 15 ] VII( M 1–2) Mn VI( M 3–7) Mn 5 [ IV Si 7 O 21
Image
The structure of (a, b) vittinkiite, (c, d) rhodonite and (e, f) ferrorhodonite viewed (a, c, e) orthogonal to [110] and (b, d, f) along [110]. M-site labels in (a) are also applicable to (c) and (e).
Published: 26 February 2020
Fig. 26. The structure of ( a , b ) vittinkiite , ( c , d ) rhodonite and ( e , f ) ferrorhodonite viewed ( a , c , e ) orthogonal to [110] and ( b , d , f ) along [110]. M -site labels in ( a ) are also applicable to ( c ) and ( e ).
Image
Ratios of the major metal cations in minerals of the rhodonite group (a) and pyroxmangite–pyroxferroite series (b), based on literature (Sundius, 1931; Hietanen, 1938; Peacor and Niizeki, 1963; Momoi, 1964; Burnham, 1971; Ohashi and Finger, 1975; Peacor et al., 1978; Sapountzis and Christofides, 1982; Pinckney and Burnham, 1988; Nelson and Griffen, 2005; Shchipalkina et al., 2017; Brusnitsyn, 2000, 2013; 2015; Shchipalkina et al., 2016; and reference therein) and our data. In (a) samples with determined crystal structures are marked by filled circles: blue – rhodonite; light purple – vittinkiite; deep purple – synthetic analogue of the end-member vittinkiite; red – ferrorhodonite; green – Zn-rich variety of rhodonite (‘fowlerite’); and grey – Mg-enriched variety of rhodonite. Other vittinkiite samples are shown by empty purple circles whereas rhodonite and ferrorhodonite samples are empty blue circles. In (b) samples with a determined crystal structure are marked by black (filled) squares.
Published: 25 September 2020
circles: blue – rhodonite; light purple – vittinkiite; deep purple – synthetic analogue of the end-member vittinkiite; red – ferrorhodonite; green – Zn-rich variety of rhodonite (‘fowlerite’); and grey – Mg-enriched variety of rhodonite. Other vittinkiite samples are shown by empty purple circles whereas
Image
Published: 09 October 2019
) Ferrorhodonite Ferrorhodonite Mn 0.84 Fe 0.16 Mn 0.84 Fe 0.16 Mn 0.84 Fe 0.16 Fe 0.81 Mn 0.12 Mg 0.04 Zn 0.03 Ca 0.81 Mn 0.19 Shchipalkina et al. ( 2017 )*** Vittinkiite Rhodonite Mn , Mg Mn , Mg Mn , Mg Mn , Fe, Mg Mn , Ca Ohashi and Finger ( 1975 ) Vittinkiite
Image
Anhedral grains of mangani-eckermannite (Meck) closely intergrown with braunite (Bnt), albite (Ab) and vittinkiite (Vtk). Polished section. Back-scattered electron image.
Published: 10 August 2023
Figure 2. Anhedral grains of mangani-eckermannite (Meck) closely intergrown with braunite (Bnt), albite (Ab) and vittinkiite (Vtk). Polished section. Back-scattered electron image.
Image
A 0.7 cm thick vein consisting of dark red mangani-eckermannite intergrown with black braunite, pink vittinkiite and colourless albite in a rock mainly consisting of colourless to pale salmon-reddish quartz. Holotype sample #5774/1, size: 2 × 1.5 × 1.5 cm. Photo: M. Milshina.
Published: 10 August 2023
Figure 1. A 0.7 cm thick vein consisting of dark red mangani-eckermannite intergrown with black braunite, pink vittinkiite and colourless albite in a rock mainly consisting of colourless to pale salmon-reddish quartz. Holotype sample #5774/1, size: 2 × 1.5 × 1.5 cm. Photo: M. Milshina.
Image
Cation ribbons and chains [Si5O15]∞ in the crystal structures of: (a) vittinkiite; (b) rhodonite; and (c) ferrorhodonite. The colour of polyhedra indicates the predominant cation: pink for Mn, grey for Ca and orange for Fe. For site labels and references see Table 2.
Published: 09 October 2019
Fig. 4. Cation ribbons and chains [Si 5 O 15 ] ∞ in the crystal structures of: ( a ) vittinkiite; ( b ) rhodonite; and ( c ) ferrorhodonite. The colour of polyhedra indicates the predominant cation: pink for Mn, grey for Ca and orange for Fe. For site labels and references see Table 2 .
Image
Projections of crystal structures of MnSiO3 polymorphs: rhodonite type (vittinkiite, this work) (a), pyroxmangite (Narita et al., 1977) (b), clinopyroxene (Tokohami et al., 1979) (c) and tetragonal garnet (Fujino et al., 1986) (d). The unit cells are outlined.
Published: 25 September 2020
Fig. 4. Projections of crystal structures of MnSiO 3 polymorphs: rhodonite type (vittinkiite, this work) ( a ), pyroxmangite (Narita et al. , 1977 ) ( b ), clinopyroxene (Tokohami et al. , 1979 ) ( c ) and tetragonal garnet (Fujino et al. , 1986 ) ( d ). The unit cells are outlined.