- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
East Pacific Ocean Islands
-
Hawaii
-
Hawaii County Hawaii
-
Hawaii Island
-
Kilauea (1)
-
-
-
-
-
Europe
-
Western Europe
-
France
-
Auvergne (1)
-
Puy-de-Dome France
-
Chaine des Puys (2)
-
Clermont-Ferrand France (1)
-
-
-
-
-
Oceania
-
Polynesia
-
Hawaii
-
Hawaii County Hawaii
-
Hawaii Island
-
Kilauea (1)
-
-
-
-
-
-
South America
-
Andes
-
Tungurahua (1)
-
-
Ecuador
-
Tungurahua (1)
-
-
-
United States
-
Hawaii
-
Hawaii County Hawaii
-
Hawaii Island
-
Kilauea (1)
-
-
-
-
-
-
Primary terms
-
data processing (3)
-
East Pacific Ocean Islands
-
Hawaii
-
Hawaii County Hawaii
-
Hawaii Island
-
Kilauea (1)
-
-
-
-
-
education (1)
-
Europe
-
Western Europe
-
France
-
Auvergne (1)
-
Puy-de-Dome France
-
Chaine des Puys (2)
-
Clermont-Ferrand France (1)
-
-
-
-
-
geophysical methods (1)
-
impact statements (1)
-
land use (1)
-
Oceania
-
Polynesia
-
Hawaii
-
Hawaii County Hawaii
-
Hawaii Island
-
Kilauea (1)
-
-
-
-
-
-
remote sensing (3)
-
roads (1)
-
South America
-
Andes
-
Tungurahua (1)
-
-
Ecuador
-
Tungurahua (1)
-
-
-
United States
-
Hawaii
-
Hawaii County Hawaii
-
Hawaii Island
-
Kilauea (1)
-
-
-
-
-
volcanology (4)
-
VOLCFLOW
Abstract VolcFlow is a finite-difference Eulerian code based on the depth-averaged approach and developed for the simulation of isothermal geophysical flows. Its capability for reproducing lava flows is tested here for the first time. The field example chosen is the 2010 lava flow of Tungurahua volcano (Ecuador), the emplacement of which is tracked by projecting thermal images onto a georeferenced digital topography. Results show that, at least for this case study, the isothermal approach of VolcFlow is able to simulate the velocity of the lava through time, as well as the extent of the solidified lava. However, the good fit between the modelled and the natural flow may be explained by the short emplacement time ( c. 20 h) of a thick lava ( c. 5 m), which could limit the influence of cooling on the flow dynamics, thus favouring the use of an isothermal rheology.
Abstract The April 2021 La Soufrière of St Vincent eruption generated several pyroclastic density currents (PDCs) during the 2 weeks of the crisis, from 9 to 22 April. To support the hazard assessment team during this eruption, numerical simulations were performed in real time and generated rapid scenario-based PDC invasion maps with the two-phase version of the code VolcFlow, which was able to simulate both the concentrated and dilute regime of PDCs. To generate the maps, only the source properties (shape and location) and the initial volume used to generate the PDCs were varied, all other input parameters were kept constant and estimated from previous simulations. New simulations were then performed based on the field-based deposit map to assess the code's ability to simulate such PDCs. Results show that the syn-crisis invasion maps satisfactorily mimic the observed valley-confined PDCs, while unconfined dilute PDCs were overestimated. The results also highlight that simulation results are greatly improved with additional field-based data, which help constrain the PDC sequence. Numerous lessons were learned, including (1) how to choose the most critical input parameters, (2) the importance of syn-eruptive radar imagery and (3) the potential of this two-phase model for rapid hazard assessment purposes.
Testing a geographical information system for damage and evacuation assessment during an effusive volcanic crisis
Abstract Using two hypothetical effusive events in the Chaîne des Puys (Auvergne, France), we tested two geographical information systems (GISs) set up to allow loss assessment during an effusive crisis. The first was a local system that drew on all immediately available data for population, land use, communications, utility and building type. The second was an experimental add-on to the Global Disaster Alert and Coordination System (GDACS) global warning system maintained by the Joint Research Centre (JRC) that draws information from open-access global data. After defining lava-flow model source terms (vent location, effusion rate, lava chemistry, temperature, crystallinity and vesicularity), we ran all available lava-flow emplacement models to produce a projection for the likelihood of impact for all pixels within the GIS. Next, inundation maps and damage reports for impacted zones were produced, with those produced by both the local system and by GDACS being in good agreement. The exercise identified several shortcomings of the systems, but also indicated that the generation of a GDACS-type global response system for effusive crises that uses rapid-response model projections for lava inundation driven by real-time satellite hotspot detection – and open-access datasets – is within the current capabilities of the community.
Abstract Prediction of the emplacement of volcanic mass flows (lava flows, pyroclastic density currents, debris avalanches and debris flows) is required for hazard and risk assessment, and for the planning of risk-mitigation measures. Numerical computer-based models now exist that are capable of approximating the motion of a given volume of volcanic material from its source to the deposition area. With these advances in technology, it is useful to compare the various codes in order to evaluate their respective suitability for real-time forecasting, risk preparedness and post-eruptive response. A ‘benchmark’ compares codes or methods, all aimed at simulating the same physical process using common initial and boundary conditions and outputs, but using different physical formulations, mathematical approaches and numerical techniques. We set up the basis for a future general benchmarking exercise on volcanic mass-flow models and, more specifically, establish a benchmark series for computational lava-flow modelling. We describe a set of benchmarks in this paper, and present a few sample results to demonstrate output analysis and code evaluation methodologies. The associated web-based communal facility for sharing test scenarios and results is also described.
Conclusion: recommendations and findings of the RED SEED working group
Abstract RED SEED stands for Risk Evaluation, Detection and Simulation during Effusive Eruption Disasters, and combines stakeholders from the remote sensing, modelling and response communities with experience in tracking volcanic effusive events. The group first met during a three day-long workshop held in Clermont Ferrand (France) between 28 and 30 May 2013. During each day, presentations were given reviewing the state of the art in terms of (a) volcano hot spot detection and parameterization, (b) operational satellite-based hot spot detection systems, (c) lava flow modelling and (d) response protocols during effusive crises. At the end of each presentation set, the four groups retreated to discuss and report on requirements for a truly integrated and operational response that satisfactorily combines remote sensors, modellers and responders during an effusive crisis. The results of collating the final reports, and follow-up discussions that have been on-going since the workshop, are given here. We can reduce our discussions to four main findings. (1) Hot spot detection tools are operational and capable of providing effusive eruption onset notice within 15 min. (2) Spectral radiance metrics can also be provided with high degrees of confidence. However, if we are to achieve a truly global system, more local receiving stations need to be installed with hot spot detection and data processing modules running on-site and in real time. (3) Models are operational, but need real-time input of reliable time-averaged discharge rate data and regular updates of digital elevation models if they are to be effective; the latter can be provided by the radar/photogrammetry community. (4) Information needs to be provided in an agreed and standard format following an ensemble approach and using models that have been validated and recognized as trustworthy by the responding authorities. All of this requires a sophisticated and centralized data collection, distribution and reporting hub that is based on a philosophy of joint ownership and mutual trust. While the next chapter carries out an exercise to explore the viability of the last point, the detailed recommendations behind these findings are detailed here.
Towards a global humanitarian volcano impact alert model integrated into a multi-hazard system
Abstract Volcanic eruptions pose a significant risk to human lives, property and infrastructure, despite rapid advances in monitoring and early warning science and technology. Some elements of risk – such as the number of people living close to volcanoes – are increasing, and the unpredictable nature of eruptions may overwhelm the local response capacity and turn into a disaster, sometimes requiring international assistance. To deal effectively with these crises, the international humanitarian community needs a global, science-based early warning system that should assimilate the state-of-the-art monitoring and early warning techniques, as well as being able to provide a preliminary impact assessment, and issue appropriate and relevant alerts. Current volcano warning systems are either only local in context or are not suited to the needs of global early warning. In this paper we propose an outline for a volcano warning system aimed at issuing alerts to the humanitarian aid community. It is designed as a four-level system, incorporating the latest monitoring and hazard modelling techniques that are applicable on a global scale. Alerts are mainly based on the predicted humanitarian impact of the modelled hazards. Systematic handling of volcanic manifestations, such as thermal signals and ash clouds from space-borne instruments, make it possible to create such a system. The Global Disaster Alert and Coordination System (GDACS), a joint effort by the United Nations and the European Commission, has been operating in a similar spirit for other natural disasters for a number of years and could fulfil the role of the desired volcano system. This paper discusses the needs and issues of this undertaking.
Tsunami hazard related to a flank collapse of Anak Krakatau Volcano, Sunda Strait, Indonesia
Abstract Numerical modelling of a rapid, partial destabilization of Anak Krakatau Volcano (Indonesia) was performed in order to investigate the tsunami triggered by this event. Anak Krakatau, which is largely built on the steep NE wall of the 1883 Krakatau eruption caldera, is active on its SW side (towards the 1883 caldera), which makes the edifice quite unstable. A hypothetical 0.280 km 3 flank collapse directed southwestwards would trigger an initial wave 43 m in height that would reach the islands of Sertung, Panjang and Rakata in less than 1 min, with amplitudes from 15 to 30 m. These waves would be potentially dangerous for the many small tourist boats circulating in, and around, the Krakatau Archipelago. The waves would then propagate in a radial manner from the impact region and across the Sunda Strait, at an average speed of 80–110 km h −1 . The tsunami would reach the cities located on the western coast of Java (e.g. Merak, Anyer and Carita.) 35–45 min after the onset of collapse, with a maximum amplitude from 1.5 (Merak and Panimbang) to 3.4 m (Labuhan). As many industrial and tourist infrastructures are located close to the sea and at altitudes of less than 10 m, these waves present a non-negligible risk. Owing to numerous reflections inside the Krakatau Archipelago, the waves would even affect Bandar Lampung (Sumatra, c . 900 000 inhabitants) after more than 1 h, with a maximum amplitude of 0.3 m. The waves produced would be far smaller than those occurring during the 1883 Krakatau eruption ( c. 15 m) and a rapid detection of the collapse by the volcano observatory, together with an efficient alert system on the coast, would possibly prevent this hypothetical event from being deadly.
Abstract Lava ingress into a vulnerable population will be difficult to control, so that evacuation will be necessary for communities in the path of the active lava, followed by post-event population, infrastructural, societal and community replacement and/or relocation. There is a pressing need to set up a response chain that bridges scientists and responders during an effusive crisis to allow near-real-time delivery of globally standard ‘products’ for a timely and adequate humanitarian response. In this chain, the scientific research groups investigating lava remote-sensing and modelling need to provide products that are both useful to, and trusted by, the crisis response community. Requirements for these products include (a) formats that can be immediately integrated into a crisis management procedure, and (b) in an agreed and stable standard. A review of current capability reveals that we are at a point where the community can provide such a response, as is the aim of the RED SEED (Risk Evaluation, Detection and Simulation during Effusive Eruption Disasters) working group. This book is the first production of this group and is intended not only as a directory of current capabilities and operational service providers, but also as a statement of intent and need, while providing a simulation designed to demonstrate how a truly pan-disciplinary response to an effusive crisis could work.