1-20 OF 29 RESULTS FOR

Upper Petropavlovka Pluton

Results shown limited to content with bounding coordinates.
Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Journal Article
Published: 01 March 2015
Russ. Geol. Geophys. (2015) 56 (3): 379–401.
...V.V. Vrublevskii Abstract Early Paleozoic alkaline basic magmatism in the Kuznetsk Alatau is manifested in the Upper Petropavlovka pluton of gabbro, feldspathoid rocks (theralites, mafic foidolites, and nepheline syenites), and Ca-carbonatites. According to Sm–Nd and Rb–Sr isotope data, the pluton...
FIGURES | View All (13)
Image
Geologic setting and internal structure of the Upper Petropavlovka pluton.a, Fragment of the geological sketch map of the western Altai–Sayan Folded Area (from literature data). 1, Cenozoic sediments; 2, Hercynian troughs and basins filled with Middle and Late Paleozoic sediments; 3, Hercynides; 4, Caledonides and older structures; 5, tectonic faults. Dotted line shows the distribution of alkaline basic intrusions in the Kuznetsk Alatau province with the location of the Upper Petropavlovka pluton.b, Geological sketch map of the Upper Petropavlovka intrusion (Vrublevskii et al., 1989, 2003a). 1, basalts and andesite-basalts; 2, subalkalic gabbro with vein-like theralite bodies; 3, mafic foidolites; 4, nepheline syenites; 5, tectonic faults; 6, boundaries of geologic bodies. KA, Kuznetsk Alatau; WS, West Sayan; GA, Gornyi Altai; Sl, Salair Ridge; MB, Minusa basin; KB, Kuznetsk Basin.
Published: 01 March 2015
Fig. 1. Geologic setting and internal structure of the Upper Petropavlovka pluton. a , Fragment of the geological sketch map of the western Altai–Sayan Folded Area (from literature data). 1 , Cenozoic sediments; 2 , Hercynian troughs and basins filled with Middle and Late Paleozoic sediments
Image
Content of major elements (wt.%) and Mg# in the subalkalic and alkaline rocks of the Upper Petropavlovka pluton. See legend in Fig. 4.
Published: 01 March 2015
Fig. 5. Content of major elements (wt.%) and Mg# in the subalkalic and alkaline rocks of the Upper Petropavlovka pluton. See legend in Fig. 4 .
Image
Character and extent of oxygen isotope fractionation between nepheline and clinopyroxene in alkaline rocks a and between calcite and magnetite in carbonatites b. 1, mafic foidolites of the Upper Petropavlovka pluton (Table 11); 2, urtites and nepheline syenites of the Kiya-Shaltyr’ and Dedova Gora intrusions, Kuznetsk Alatau (Pokrovskii et al., 1998; Vrublevskii et al., 2010); 3, alkaline rocks of the Vitim province, western Transbaikalia (Doroshkevich et al., 2012c); 4, ultramafic foidolites of the Odikhincha massif (Polar Siberia); 5, nepheline syenites of the Khibiny pluton (Kola Peninsula) (Pokrovskii, 2000); 6, carbonatites of the Oka complex, Canada (Conway and Taylor, 1969). 7, carbonatites of the Upper Petropavlovka pluton (Table 11). Cpx, Clinopyroxene; Ne, nepheline; Mgt, magnetite; Cc, calcite. Equilibrium temperatures are calculated as follows: 1000lna (muscovite–clinopyroxene) = 0.55 × (106/T2) + 0.6 (Javoy, 1977), 1000lna (calcite– magnetite) = 4.2 × (106/T2) + 1.1 (Conway and Taylor, 1969), 1000lna (calcite–magnetite) = 5.74 × (106/T2) (Clayton and Kieffer, 1991).
Published: 01 March 2015
Fig. 11. Character and extent of oxygen isotope fractionation between nepheline and clinopyroxene in alkaline rocks a and between calcite and magnetite in carbonatites b . 1 , mafic foidolites of the Upper Petropavlovka pluton ( Table 11 ); 2 , urtites and nepheline syenites of the Kiya
Image
Relationship of the oxygen and strontium isotope compositions in the rocks of the Upper Petropavlovka pluton and the Paleozoic alkaline intrusions of western Transbaikalia. 1–5, gabbro (1), clinopyroxene from gabbro (2), alkaline rocks: theralites, mafic foidolites, nepheline syenites (3), clinopyroxene from alkaline rocks (4), carbonatites (5) of the Upper Petropavlovka pluton;6, alkaline rocks of the Vitim province, western Transbaikalia (Doroshkevich et al., 2012c; Pokrovskii et al., 1998). Shaded area shows the compositions of clinopyroxene and bulk samples of gabbro and alkaline rocks from the Kiya-Shaltyr’, Dedova Gora, Goryachegorsk, and Tuluyul plutons of the Kuznetsk Alatau, after (Pokrovskii et al., 1998) and our unpublished data. The Sr–O isotope compositions of primitive mantle (M) and mantle beneath island arcs (AM), as well as trends I–III of mixing of substance are given after (Davidson et al., 2005): I, basalt + young crust and pelagic sediments; II, basalt + ancient crust; III, mantle + ancient subduction sediments (contamination of the source). The numbers 1 : 1 and 1 : 10 on the dashed lines are the ratios of Sr contents in the mantle (magma) and contaminant (Pokrovskii, 2000). The hypothetical isotopic composition of crustal material is shown on the plot.
Published: 01 March 2015
Fig. 13. Relationship of the oxygen and strontium isotope compositions in the rocks of the Upper Petropavlovka pluton and the Paleozoic alkaline intrusions of western Transbaikalia. 1–5 , gabbro ( 1 ), clinopyroxene from gabbro ( 2 ), alkaline rocks: theralites, mafic foidolites, nepheline
Image
Trace-element content of subalkalic and alkaline rocks in the Kuznetsk Alatau and Minusa basin. 1, gabbro, theralite, mafic foidolites, and nepheline syenite of the Upper Petropavlovka pluton;2, urtites of the Kiya-Shaltyr’ pluton (Gertner et al., 2002); 3, Devonian subalkalic mafic rocks of the Minusa basin (Vorontsov et al., 2011). Shaded area shows the predominant compositions of the rocks in the alkaline basic intrusions of the Kuznetsk Alatau (Gertner et al., 2002).
Published: 01 March 2015
Fig. 8. Trace-element content of subalkalic and alkaline rocks in the Kuznetsk Alatau and Minusa basin. 1 , gabbro, theralite, mafic foidolites, and nepheline syenite of the Upper Petropavlovka pluton; 2 , urtites of the Kiya-Shaltyr’ pluton ( Gertner et al., 2002 ); 3 , Devonian subalkalic
Image
Chemical composition of nepheline and feldspar in the subalkalic and alkaline rocks of the Upper Petropavlovka pluton.a, Diagram Ne(NaAlSiO4)–Ks(KAl-SiO4)–Qz(SiO2) (geothermometer of Hamilton and Mackenzie) with isotherms, after (Hamilton, 1961). White circles show feldspathoid in igneous rocks; black ones, feldspathoid in nephelinized gabbro and recrystallized pegmatoid foidolites. Shaded area shows the predominant compositions of nepheline in paragenesis with feldspar from the rocks of the alkaline ultramafic, alkali-gabbro, and alkali-granite associations, after (Samsonova, 1973). b, Ab–An–Or diagram with the relationships of components in plagioclase (white circles) and K-feldspar (black circles).
Published: 01 March 2015
Fig. 3. Chemical composition of nepheline and feldspar in the subalkalic and alkaline rocks of the Upper Petropavlovka pluton. a , Diagram Ne(NaAlSiO 4 )–Ks(KAl-SiO 4 )–Qz(SiO 2 ) (geothermometer of Hamilton and Mackenzie) with isotherms, after (Hamilton, 1961). White circles show feldspathoid
Image
Distribution of rare-earth (a) and incompatible (b) elements in the rocks of the Upper Petropavlovka pluton.1, subalkalic gabbro;2, theralite and mafic foidolites; 3, nepheline syenite; 4, carbonatites. The contents of the elements are normalized to chondrite and primitive mantle (PM) (Sun and McDonough, 1989). Spectra for the average compositions (dark gray lines) of oceanic-island basalts (OIB) and enriched middle ocean-ridge basalts (E-MORB), after (Sun and McDonough, 1989), are presented. Plot b shows the trace-element partition in subalkalic gabbro (heavy solid line) and nepheline syenite (dashed line); shaded area shows spectra for theralite and mafic foidolites.
Published: 01 March 2015
Fig. 7. Distribution of rare-earth ( a ) and incompatible ( b ) elements in the rocks of the Upper Petropavlovka pluton. 1 , subalkalic gabbro; 2 , theralite and mafic foidolites; 3 , nepheline syenite; 4 , carbonatites. The contents of the elements are normalized to chondrite and primitive
Image
Oxygen and carbon isotope composition of carbonatites and calcite from the alkaline rocks of the Central Asian Fold Belt. 1, carbonatites of the Upper Petropavlovka pluton;2, carbonates from a hydrothermal vein with host calciphyre and marble; 3, magmatic carbonates in the ijolite-urtites of the Mukhal and the nepheline syenites of the Saizha, Snezhnaya, and Amalat plutons of the Vitim province, western Transbaikalia (Doroshkevich et al., 2012c). Outline shows the compositional fields of carbonatites from the Pen-chenga (Yenisei Ridge, YR), Zima (East Sayan, ES), Sangilen (southeastern Tuva, SET) Edel’veis (Gorny Altai, GA), and Mushugai-Khuduk (southern Mongolia, SM) complexes (see references in (Vrublevskii, 2003)). PIC (Primary Igneous Carbonatites), “Box” of primary magmatic carbonatites (Conway and Taylor, 1969); NSC (normal sedimentary carbonates), compositional field for marine normal sedimentary carbonates (Pokrovskii, 2000). Arrow shows the increase in the crustal contamination of salt carbonatite melts.
Published: 01 March 2015
Fig. 10. Oxygen and carbon isotope composition of carbonatites and calcite from the alkaline rocks of the Central Asian Fold Belt. 1 , carbonatites of the Upper Petropavlovka pluton; 2 , carbonates from a hydrothermal vein with host calciphyre and marble; 3 , magmatic carbonates in the ijolite
Image
Petrochemical features of carbonatites in the alkaline igneous complexes of the Central Asian Fold Belt. 1–3, carbonatites: Upper Petropavlovka pluton (1), Edel’veis complex, Gorny Altai (2), Sangilen complex, southeastern Tuva (3) (Vrublevskii, 2003). a, Diagram (FeO + Fe2O3 + MnO)/MgO–CaO/(CaO + MgO + FeO + Fe2O3 + MnO) (Woolley and Kempe, 1989). Shaded area shows the composition of carbonatites from southern Mongolia and western Transbaikalia (Nikiforov et al., 2000; Samoilov and Kovalenko, 1983). The compositions of carbonatites with ≤12 wt.% SiO2 are presented. Arrows show the variation trends for the chemical features of carbonatites. b, Diagram CaO–MgO–(FeO + Fe2O3 + MnO) (Woolley and Kempe, 1989). I–III, areas of the predominant compositions of Ca-carbonatites (I), Mg-carbonatites (II), ferrocarbonatites (III).
Published: 01 March 2015
Fig. 6. Petrochemical features of carbonatites in the alkaline igneous complexes of the Central Asian Fold Belt. 1 – 3 , carbonatites: Upper Petropavlovka pluton ( 1 ), Edel’veis complex, Gorny Altai ( 2 ), Sangilen complex, southeastern Tuva ( 3 ) ( Vrublevskii, 2003 ). a , Diagram (FeO + Fe 2
Image
Classification and composition of the femic rock-forming minerals of the Upper Petropavlovka pluton. The results of analysis of minerals from subalkalic gabbro (1), theralites (2), mafic foidolites (3), nepheline syenites (4), and carbonatites (5) are presented. a, Evolution of the chemical features of clinopyroxene in terms of the relationship Ca–Mg–Fe2+. On the Hess–Poldervaart classification diagram, a fragment is marked gray. b, Chemical composition of amphiboles and their nomenclature, after (Leake, 1978). c, Relationship of Fe contents in coexisting clinopyroxene (fCpx), olivine (fOl), and amphibole (fAm). d, Relationship of AlVI and AlIV in the crystal-chemical formula of amphibole. The principle of the diagram is after (Fleet and Barnett, 1978). I, Compositional field for Ca-amphibole from unaltered igneous rocks; II–III, compositional fields for amphibole from metamorphic rocks: II, low-pressure facies; III, high-pressure facies. Dotted line shows the compositional field for pargasite and kaersutite from volcanics.
Published: 01 March 2015
Fig. 2. Classification and composition of the femic rock-forming minerals of the Upper Petropavlovka pluton. The results of analysis of minerals from subalkalic gabbro ( 1 ), theralites ( 2 ), mafic foidolites ( 3 ), nepheline syenites ( 4 ), and carbonatites ( 5 ) are presented. a , Evolution
Image
Petrochemical classification of the silicate rocks of the Upper Petropavlovka pluton.1, subalkalic gabbro;2, theralites; 3, mafic foidolites; 4, nepheline syenites. On the TAS diagram (a), the classification fields are after (Le Maitre et al., 1989): I, picrobasalt; II, basalt; III, basanite and tephrite; IV, phonotephrite; V, tephriphonolite; VI, phonolite; VII, foidite. Dotted line with figures (1–4) shows the predominant compositions of Devonian volcanics from the Kuznetsk Alatau, which are comagmatic with the alkaline basic intrusions, after (Borodin et al., 1987): 1, olivine–pyroxene basalts, trachybasalts, and basanites; 2, tephrites and bereshites; 3, phonolites; 4, nephelinites. Shaded areas on the K2O–Na2O diagram (b) show the compositions of basalts, basanites, tephrites (I), bereshites, nephelinites (II), and phonolites (III) from the Kuznetsk Alatau (Borodin et al., 1987). Solid line shows the compositions (71 analyses) of gabbro, theralites, foidolites (without urtites), and nepheline syenites from the northern Kuznetsk Alatau (Gertner et al., 2002; Sazonov et al., 2000).
Published: 01 March 2015
Fig. 4. Petrochemical classification of the silicate rocks of the Upper Petropavlovka pluton. 1 , subalkalic gabbro; 2 , theralites; 3 , mafic foidolites; 4 , nepheline syenites. On the TAS diagram ( a ), the classification fields are after ( Le Maitre et al., 1989 ): I, picrobasalt; II, basalt
Image
Nd and Sr isotope composition of igneous complexes of alkaline rocks and carbonatites in the Central Asian Fold Belt. Stars show the isotopic compositions of subalkalic gabbro, mafic foidolite, and carbonatite from the Upper Petropavlovka pluton. Compositional fields: 1, Early Paleozoic (510–485 Ma) gabbro-syenite and granitoid complexes of the Kuznetsk Alatau (Vrublevskii et al., 2012b); 2, Devonian (400–385 Ma) alkaline basic intrusions on the northeastern slope of the Kuznetsk Alatau (Vrublevskii et al., 2005); 3, Devonian (~390 Ma) subalkalic mafic rocks of the Minusa basin (Vorontsov et al., 2011); GA, Edel’veis complex of alkaline rocks and carbonatites (Є2), Gorny Altai (Vrublevskii et al., 2012a); YR, carbonatites and alkaline rocks of the Penchenga and Middle Tatarka complexes (PR3), Yenisei Ridge (Sazonov et al., 2007; Vrublevskii et al., 2003b); ES, Zima complex of alkaline ultramafic rocks and carbonatites (PR3), East Sayan (Chernyshova and Morikiyo, 1999; Cherny-shova et al., 1992, 1995; Morikiyo et al., 2001); NTB, carbonatites (PR3) from northern Transbaikalia (Doroshkevich et al., 2011); WTB, alkaline intrusions (PZ1 and PZ3) of the Vitim province, western Transbaikalia (Doroshkevich et al., 2012c); SWTB, alkaline-rock and carbonatite complexes (MZ3) of southwestern Transbaikalia (Doroshkevich and Ripp, 2009; Nikiforov et al., 2002); SM, carbonatites of the Mushugai-Khuduk complex (MZ3), southern Mongolia (Vladykin et al., 2000). Shaded area shows the predominant compositions of Early–Middle Paleozoic basic igneous associations in Northern Asia (Yarmolyuk and Kovalenko, 2003). “The Mantle Array” and the position of the PREMA, E-MORB, HIMU, EM I, and EM II reservoirs are given in accordance with their present-day isotopic parameters after (Zindler and Hart, 1986).
Published: 01 March 2015
Fig. 12. Nd and Sr isotope composition of igneous complexes of alkaline rocks and carbonatites in the Central Asian Fold Belt. Stars show the isotopic compositions of subalkalic gabbro, mafic foidolite, and carbonatite from the Upper Petropavlovka pluton. Compositional fields: 1 , Early
Image
Relationships of HFSE in the subalkalic and alkali basic rocks of the Kuznetsk Alatau and Minusa basin. 1–3, subalkalic gabbro (1), theralite (2), mafic foidolites (3) of the Upper Petropavlovka pluton;4, 5, gabbro (4) and nepheline-containing igneous rocks (5) from the Devonian alkaline basic intrusions of the Kuznetsk Alatau (Gertner et al., 2002); 6, predominant compositions of the subalkalic and alkaline rocks of the Kuznetsk Alatau province (Gertner et al., 2002); 7, Devonian subalkalic mafic rocks of the Minusa basin (Vorontsov et al., 2011). a, Zr–Nb–Y diagram with discrimination fields, after (Meschede, 1986): AI, intraplate alkali basalt; AII, intraplate alkali basalt and tholeiite; B, E-MORB; C, intraplate tholeiite and island-arc basalt; D, N-MORB and island-arc basalt. b, La–Y–Nb diagram with discrimination fields, after (Cabanis and Lecolle, 1989): 1, island-arc (1A, calc-alkali; 1C, tholeiite; 1B, overlap) basalt; 2A, continental basalt; 2B, backarc-basin basalt; 3, oceanic basalt (3A, alkali basalt of intracontinental rifts; 3B, C, enriched and slightly enriched E-MORB; 3D, N-MORB). c, d, Zr/Nb–Nb/Th and Nb/Y–Zr/Y diagrams. The principles of the diagrams and discrimination of basalt from different tectonic settings are after (Condie, 2005): ARC, island-arc basalt; N-MORB, middle ocean-ridge basalt; OIB, oceanic-island basalt; OPB, oceanic-plateau basalt. Dashed line shows the possible boundary between plume and nonplume sources. e, Th/Yb–Ta/Yb diagram with discrimination fields, after (Gorton and Schandl, 2000; Pearce, 1983): OIA, island arcs; ACM, active continental margins; WPVZ, within-plate volcanic zones; WPB, within-plate basalt. Star shows the average compositions of continental (CIAB) and oceanic (OIAB) island-arc basalts, after (Kelemen et al., 2003).
Published: 01 March 2015
Fig. 9. Relationships of HFSE in the subalkalic and alkali basic rocks of the Kuznetsk Alatau and Minusa basin. 1–3 , subalkalic gabbro ( 1 ), theralite ( 2 ), mafic foidolites ( 3 ) of the Upper Petropavlovka pluton; 4 , 5 , gabbro ( 4 ) and nepheline-containing igneous rocks ( 5 ) from
Journal Article
Published: 01 October 2013
Russ. Geol. Geophys. (2013) 54 (10): 1288–1304.
...’ Formation, C 2 ( 3 ) and volcanosedimentary rocks, C 2–3 ( 4 ); 5 , Argimbay gabbro; 6 , Maksut picrites; 7 , faults; 8 , Quaternary sediments; 9 , plutons of the Argimbay intrusive belt: 1, Argimbay; 2, Podkhoznyi; 3, Shokzhal; 4, Zosimovskii; 5, Pridorozhnyi; 6, Karasu; 7, Petropavlovka; 8...
FIGURES | View All (11)
Journal Article
Published: 01 November 2014
Russ. Geol. Geophys. (2014) 55 (11): 1264–1277.
...: 1, Goryachaya Gora; 2, Kurgusul; 3, Kiya-Shaltyr; 4, Dedova Gora; 5, Verkhnyaya Petropavlovka. 1 , Upper Paleozoic deposits of the Kuznetsk carbonaceous trough; 2 , volcanic and terrigenous deposits of Devonian postorogenic troughs and grabens; 3 , Ordovician terrigenous deposits of the Taidon...
FIGURES | View All (8)
Image
Scheme of the geologic structure of northern Kuznetsk Alatau, modified and supplemented from Rudnev et al. (2008). Stratified deposits: 1 – Meso–Cenozoic deposits of the Chulym–Yenisei basin; 2 – volcanic deposits of the Uchulen–Kazankol and Palatninsk–Belaya Osipovka complexes, undivided, D1; 3 – volcanic deposits of the Bazyr–Apshan complex of the Nazarovka basin, undivided, D1; 4 – terrigenous-carbonate deposits of the Taimen Formation, O1; 5 – Berikul’ rhyodacite–basalt–trachybasalt complex, Є2; 6 – terrigenous-carbonate deposits of the Usa Formation, Є1; 7 – volcanic deposits of the Ust’-Anzas trachyte–trachybasalt–basalt complex, Є1; 8 – volcanic deposits of the Chumai plagiorhyolite–basalt complex, V– Є1; 9 – calcareous and carbonate–clayey deposits of the Malyi Rastai Formation and clay–silica–calcareous deposits of the Prokop’evo Formation, R3?–V. Intrusive deposits, undivided: 10 – Tel’bes monzodiorite–granodiorite–melanogranite complex, D1; 11 – Goryachegorsk alkali gabbroid complex, D1; 12 – Chebula alkali granite–granite complex, D1; 13 – Karadat alkali syenite complex, D1; 14 – Martaiga(?) quartz diorite–granodiorite (tonalite)–granite complex, О1; 15 – Karnayul’ granosyenite–melanogranite complex, О1; 16–18 – Malyi Dudet monzogabbro–monzodiorite complex, Є3–O1 (16 – syenites and quartz syenites, 17 – monzodiorites, 18 – monzogabbro); 19 – Upper Petropavlovka alkali gabbroid complex, Є3–O1; 20 – Krasnyi Kamen’ leucomonzodiorite–leucomonzonite–granosyenite complex, Є3–O1; 21 – Martaiga quartz diorite–granodiorite (tonalite)–granite complex, Є3–O1; 22 – Taskyl pyroxenite–gabbro complex, Є2; 23 – early Cambrian plagiogranite complex, Є1; 24 – Tylin (Lavrenovo) diorite–tonalite–plagiogranite complex, Є1; 25 – early Cambrian pyroxenites and gabbro, Є1; 26 – Barkhat dunite–harzburgite complex, R3–Є1; 27 – tonalite–plagiogranite association, R3; 28 – Kundusuyul gabbro–diorite–dolerite complex, R3?; 29 – Moskovka peridotite–pyroxenite–gabbro complex, R3?; 30 – faults; 31 – results of U–Pb isotope dating, age, Ma (Vrublevskii et al., 2003; Rudnev et al., 2006, 2008), parenthesized is the number of the massif (1 – Tylin, 2 – Kozhukh, 3 – Krasnyi Kamen’, 4 – Malyi Dudet, 5 – Kaidalovo, 6 – Udarnaya, 7 – Karnayul, 8 – Tsentral’nyi, 9 – Upper Petropavlovka, 10 – Karadat, 11 – Gremyachikha, 12 – North Gremyachikha, in the Kundusuyul pluton). Roman numerals in squares denote batholiths (I – Kozhukh, II – Dudet, and III – Tsentral’nyi). Inset shows a scheme of geological and structural regionalization of northern Kuznetsk Alatau, after Shokal’skii et al. (2000): PZU – Pezas–Zolotoi Kitat uplift, IU – Iyus uplift, AU – Azyrtal uplift, ChB – Chumai block, KB – Kanym block, TBB – Talanovka–Bogorodkaii block, TB – Tom’ block, TG – Taidon graben, RG – Rastai graben, SG – Sargaya graben, PVB – Palatnaya volcanic basin, NB – Nazarovka basin, NMB – North Minusa basin. Rectangle outlines the study area.
Published: 01 February 2023
)–granite complex, О 1 ; 15 – Karnayul’ granosyenite–melanogranite complex, О 1 ; 16 – 18 – Malyi Dudet monzogabbro–monzodiorite complex, Є 3 –O 1 ( 16 – syenites and quartz syenites, 17 – monzodiorites, 18 – monzogabbro); 19 – Upper Petropavlovka alkali gabbroid complex, Є 3 –O 1 ; 20
Image
Geochemical composition of rocks of Kuznetsk Alatau alkaline mafic intrusive massifs. a, Trace-element patterns. Thin solid lines mark the compositions of the Belaya Gora pluton rocks. Average contents of trace elements in the primitive mantle (PM), oceanic-island basalts (OIB), and island-arc basalts (IAB) are given after Kelemen et al. (2003) and Sun and McDonough (1989). Gray field marks feldspathoid rocks (mafic foidolites, juvites, nepheline syenites) from petrotypical alkaline mafic intrusions (Kiya–Shaltyr, Goryachaya Gora, Kurgusul) of the northern Kuznetsk Alatau (our data). b, Th/Yb–Ta/Yb diagram, after Gorton and Schandl (2000): OIA, oceanic island arcs; ACM, active continental margins; WPVZ, within-plate volcanic zones; WPB, within-plate basalts; N-MORB, mid-ocean ridge basalts; E-MORB, enriched mid-ocean ridge basalts. c, Nb/Y–Zr/Y discrimination diagram for basalts of different tectonic settings, after Condie (2005): ARC, island-arc basalts, OPB, oceanic-plateau basalts. d, Nd and Sr isotope compositions. b–d, Rhombuses mark the compositions of subalkalic and alkaline rocks of the Belaya Gora pluton (Tables 3 and 4). Outlined are the fields of the predominant compositions of subalkalic gabbroids (solid bold line) and feldspathoid rocks (dashed line) from Kuznetsk Alatau alkaline mafic intrusions. Hatched is the predominant composition field of Devonian (~390 Ma) subalkalic and alkali basaltoids of the Minusa trough (Vorontsov et al., 2013b). The average composition of continental island-arc basalts (CIAB) is given after Kelemen et al. (2003). Asterisk marks the compositions of mafic foidolite and nepheline syenite of the Belaya Gora pluton. d, Composition fields of Paleozoic Kuznetsk Alatau igneous complexes (1–4): 1, alkaline rocks and carbonatites (T ≈ 509 Ma) of the Upper Petropavlovka intrusion; 2, Devonian (~385–400 Ma) alkaline mafic intrusions; 3, gabbro–monzodiorite– syenite association (~485–500 Ma); 4, Cambrian and Silurian–Devonian granitoids, including Gornaya Shoria and Gorny Altai (Kruk et al., 2001; Rudnev, 2013; Vrublevskii et al., 2003, 2005, 2012b, 2014b). The mantle array domain and the position of the PREMA, MORB, HIMU, EM I, and EM II reservoirs are given in accordance with their modern isotope parameters, after Zindler and Hart (1986).
Published: 01 March 2016
and carbonatites ( T ≈ 509 Ma) of the Upper Petropavlovka intrusion; 2, Devonian (~385–400 Ma) alkaline mafic intrusions; 3, gabbro–monzodiorite– syenite association (~485–500 Ma); 4, Cambrian and Silurian–Devonian granitoids, including Gornaya Shoria and Gorny Altai ( Kruk et al., 2001 ; Rudnev, 2013
Journal Article
Published: 01 March 2016
Russ. Geol. Geophys. (2016) 57 (3): 464–472.
... and carbonatites ( T ≈ 509 Ma) of the Upper Petropavlovka intrusion; 2, Devonian (~385–400 Ma) alkaline mafic intrusions; 3, gabbro–monzodiorite– syenite association (~485–500 Ma); 4, Cambrian and Silurian–Devonian granitoids, including Gornaya Shoria and Gorny Altai ( Kruk et al., 2001 ; Rudnev, 2013...
FIGURES | View All (4)
Image
Geologic position and internal structure of alkaline basic intrusive massifs of the Kuznetsk Alatau. A, Schematic geologic structure of the northeastern Kuznetsk Alatau (Alabin, 1983; Dovgal’ and Shirokikh, 1980; Gertner et al., 2002, 2012; Grinev, 1990; Khomichev et al., 1994; Makarenko and Kortusov, 1991; Shokal’skii et al., 2000; Skobelev, 1963), with supplements; B–E, geological schemes of the Goryachaya Gora (B), Kurgusul (C), Dedova Gora (D), and Kiya-Shaltyr (E) alkaline basic plutons (Andreeva, 1968; Gertner et al., 2007; Grinev, 1990; Ivashkina, 1963; Vrublevskii and Bykova, 1987). Asterisked are the localities of sampling for U–Pb isotope analysis and their numbers. Inset: rectangle outlines the geographic location of the study area: I, Kuznetsk Alatau; II, Gorny Altai; III, West Sayan; IV, Kuznetsk trough; V, Minusa trough. Black circles mark alkaline basic intrusions: 1, Goryachaya Gora; 2, Kurgusul; 3, Kiya-Shaltyr; 4, Dedova Gora; 5, Verkhnyaya Petropavlovka. 1, Upper Paleozoic deposits of the Kuznetsk carbonaceous trough; 2, volcanic and terrigenous deposits of Devonian postorogenic troughs and grabens; 3, Ordovician terrigenous deposits of the Taidon graben; 4, Lower–Middle Cambrian carbonate and volcanic deposits; 5, Upper Riphean–Lower Cambrian siliceous shales and volcanic and carbonate deposits; 6, 7, Early Paleozoic intrusions of normal alkalinity: gabbroids and syenites (6), granitoids (7); 8, rocks of Neoproterozoic ophiolite association (fragments of the lithosphere of the Paleo-Asian ocean); 9, 10, subalkalic gabbroids: meso- and melanogabbro (9), trachytoid leucogabbro (10); 11–16, feldspathic igneous rocks: theralites and leucotheralites (11), feldspathic urtites (12), urtites with sites of pegmatoid ijolites (13), juvites (14), foyaites (15), dikes and pegmatoid veined bodies of nepheline syenites (16); 17, faults; 18, boundaries of geologic bodies; 19, facies petrographic boundaries.
Published: 01 November 2014
circles mark alkaline basic intrusions: 1, Goryachaya Gora; 2, Kurgusul; 3, Kiya-Shaltyr; 4, Dedova Gora; 5, Verkhnyaya Petropavlovka. 1 , Upper Paleozoic deposits of the Kuznetsk carbonaceous trough; 2 , volcanic and terrigenous deposits of Devonian postorogenic troughs and grabens; 3 , Ordovician