Update search
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
Format
Article Type
Journal
Publisher
Section
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Asia
-
Middle East
-
Turkey
-
Anatolia (1)
-
-
-
-
Europe
-
Carpathians (1)
-
Central Europe
-
Hungary
-
Bakony Mountains (1)
-
-
-
Pannonian Basin (1)
-
-
-
commodities
-
oil and gas fields (1)
-
petroleum
-
natural gas (1)
-
-
-
elements, isotopes
-
carbon
-
organic carbon (1)
-
-
-
fossils
-
Invertebrata
-
Mollusca
-
Gastropoda (1)
-
-
-
-
geologic age
-
Cenozoic
-
Tertiary
-
Neogene
-
Miocene
-
middle Miocene (1)
-
-
-
-
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous
-
Campanian
-
lower Campanian (1)
-
-
-
-
Triassic (1)
-
-
Paleozoic (1)
-
-
Primary terms
-
Asia
-
Middle East
-
Turkey
-
Anatolia (1)
-
-
-
-
biogeography (1)
-
carbon
-
organic carbon (1)
-
-
Cenozoic
-
Tertiary
-
Neogene
-
Miocene
-
middle Miocene (1)
-
-
-
-
-
Europe
-
Carpathians (1)
-
Central Europe
-
Hungary
-
Bakony Mountains (1)
-
-
-
Pannonian Basin (1)
-
-
faults (1)
-
folds (1)
-
fractures (1)
-
Invertebrata
-
Mollusca
-
Gastropoda (1)
-
-
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous
-
Campanian
-
lower Campanian (1)
-
-
-
-
Triassic (1)
-
-
metamorphism (1)
-
oil and gas fields (1)
-
paleoecology (1)
-
Paleozoic (1)
-
petroleum
-
natural gas (1)
-
-
tectonics (1)
-
GeoRef Categories
Era and Period
Epoch and Age
Book Series
Date
Availability
Ugod Limestone
Structure, Stratigraphy, and Petroleum Geology of the Little Plain Basin, Northwestern Hungary Available to Purchase
The heterobranch subgenus Trochactaeon ( Trochactaeon ) in the Campanian (Late Cretaceous) of the northern Arabian Platform and its paleoenvironmental and paleobiogeographic implications Available to Purchase
Optimising development and production of naturally fractured reservoirs using a large empirical dataset Open Access
Cretaceous Available to Purchase
Abstract During the Cretaceous (145.5-65.5 Ma; Gradstein et al. 2004 ). Central Europe was part of the European continental plate, which was bordered by the North Atlantic ocean and the Arctic Sea to the NW and north, the Bay of Biscay to the SW, the northern branch of the Tethys Ocean to the south, and by the East European Platform to the east ( Fig. 15.1 ). The evolution of sedimentary basins was influenced by the interplay of two main global processes: plate tectonics and eustatic sea-level change. Plate tectonic reconfigurations resulted in the widening of the Central Atlantic, and the opening of the Bay of Biscay. The South Atlantic opening caused a counter-clockwise rotation of Africa, which was coeval with the closure of the Tethys Ocean. Both motions terminated the Permian-Early Cretaceous North Sea rifting and placed Europe in a transtensional stress field. The long-term eustatic sea-level rise resulted in the highest sea level during Phanerozoic times ( haq et al. 1988;Hardenbol et al. 1998 ). Large epicontinental shelf areas were flooded as a consequence of elevated spreading rates of mid-ocean ridges and intra-oceanic plateau volcanism, causing the development of extended epicontinental shelf seas and shelf-sea basins ( Hays & pitman 1973 ; Larson 1991 ). A new and unique lithofacies type, the pelagic chalk, was deposited in distal parts of the individual basins. Chalk deposition commenced during middle Cenomanian-early Turanian times. Chalk consists almost exclusively of the remains of planktonic coccolithophorid algae and other pelagic organisms, and its great thickness reflects a high rate of production of the algal tests. The bulk of the grains are composed of lowmagnesium calcite, representing coccolith debris with a subordinate amount of foraminifers, calcispheres, small invertebrates and shell fragments of larger invertebrates ( Håkansson et al. 1974 ; Surlyk & Birkelund 1977 ; Nygaard et al. 1983 ; Hancock 1975 , 1993 ).
Fossil fuels, ore and industrial minerals Available to Purchase
Abstract The mining of metallic and non-metallic commodities in Central Europe has a history of more than 2000 years. Today mainly non-metallic commodities, fossil fuels and construction raw materials play a vital role for the people living in Central Europe. Construction raw materials, albeit the most significant raw material, are not considered further here; for details refer to thematic maps issued by local geological surveys and comprehensive studies such as the textbook by Prentice (1990) . Even if many deposits in Central Europe, especially metallic deposits, are no longer extensive by world standards, the huge number and variety of deposits in Central Europe is unique and allows the student of metallogenesis to reconstruct the geological history of Central Europe from the Late Precambrian to the Recent in a way best described as ‘minerostratigraphy’. The term ‘deposit’ is used in this review for sites which were either mined in the twentieth century or are still being operated. A few sites that underwent exploration or trial mining have also been included in order to clarify certain concentration processes. They are mentioned explicitly in the text to avoid confusion with real deposits. Tonnage and grade are reported in the text only for the most important deposits. Production data for the year 2005 are listed in Table 21.1 for the countries under consideration. Reserves and production data of hydrocarbons in Central European basins are given in Table 21.2 . In the present study, Central Europe covers the Variscan core zones in the extra-Alpine part of Central Europe stretching from eastern France (Massif Central) into Poland where the contact between the Variscan Orogen and the Baltic Shield is concealed by a thick pile of platform sediments. In a north-south direction, Central Europe stretches from central Denmark to the southern boundary of the Po Plain in Italy, making the entire Variscan Foreland Basin, the Alpine Mountain Range, the Western Carpathians and the North Dinarides part of the study area. An outline of the geological and geographical settings is shown in Figure 21.1 . The precise geographical position of mineral sites, wells of special interest, hydrocarbon provinces, oil shale deposits and coal fields may be deduced from Tables 21.3 to 21.11 and the map ‘Mineral and energy resources of Central Europe’, at a scale 1:2 500 000 (see CD inside back cover).