Update search
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
Format
Article Type
Journal
Publisher
Section
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Europe
-
Alps (1)
-
Southern Europe
-
Croatia (5)
-
Istria (3)
-
Italy
-
Apennines
-
Northern Apennines (1)
-
-
Marches Italy (1)
-
Veneto Italy
-
Belluno Italy (1)
-
-
-
Slovenia (1)
-
-
-
-
elements, isotopes
-
carbon
-
C-13/C-12 (1)
-
-
chemical ratios (1)
-
isotope ratios (1)
-
isotopes
-
stable isotopes
-
C-13/C-12 (1)
-
O-18/O-16 (1)
-
-
-
metals
-
chromium (1)
-
-
oxygen
-
O-18/O-16 (1)
-
-
-
fossils
-
coprolites (1)
-
ichnofossils (1)
-
Invertebrata
-
Arthropoda
-
Mandibulata
-
Crustacea
-
Malacostraca
-
Brachyura (1)
-
-
-
-
-
Protista
-
Foraminifera (5)
-
-
-
microfossils (5)
-
Plantae
-
algae
-
nannofossils (1)
-
-
-
-
geochronology methods
-
paleomagnetism (1)
-
-
geologic age
-
Cenozoic
-
Tertiary
-
Paleogene
-
Eocene
-
middle Eocene
-
Lutetian (1)
-
-
upper Eocene
-
Priabonian (1)
-
-
-
-
-
-
-
igneous rocks
-
igneous rocks
-
plutonic rocks
-
ultramafics
-
peridotites (1)
-
-
-
volcanic rocks
-
pyroclastics
-
tuff (1)
-
-
-
-
-
metamorphic rocks
-
metamorphic rocks (1)
-
-
minerals
-
oxides
-
spinel (1)
-
-
-
Primary terms
-
bibliography (1)
-
carbon
-
C-13/C-12 (1)
-
-
Cenozoic
-
Tertiary
-
Paleogene
-
Eocene
-
middle Eocene
-
Lutetian (1)
-
-
upper Eocene
-
Priabonian (1)
-
-
-
-
-
-
coprolites (1)
-
earthquakes (1)
-
Europe
-
Alps (1)
-
Southern Europe
-
Croatia (5)
-
Istria (3)
-
Italy
-
Apennines
-
Northern Apennines (1)
-
-
Marches Italy (1)
-
Veneto Italy
-
Belluno Italy (1)
-
-
-
Slovenia (1)
-
-
-
ichnofossils (1)
-
igneous rocks
-
plutonic rocks
-
ultramafics
-
peridotites (1)
-
-
-
volcanic rocks
-
pyroclastics
-
tuff (1)
-
-
-
-
Invertebrata
-
Arthropoda
-
Mandibulata
-
Crustacea
-
Malacostraca
-
Brachyura (1)
-
-
-
-
-
Protista
-
Foraminifera (5)
-
-
-
isotopes
-
stable isotopes
-
C-13/C-12 (1)
-
O-18/O-16 (1)
-
-
-
metals
-
chromium (1)
-
-
metamorphic rocks (1)
-
oxygen
-
O-18/O-16 (1)
-
-
paleoecology (2)
-
paleogeography (2)
-
paleomagnetism (1)
-
Plantae
-
algae
-
nannofossils (1)
-
-
-
plate tectonics (1)
-
sedimentary rocks
-
clastic rocks
-
marl (1)
-
sandstone (1)
-
-
-
tectonics (1)
-
-
sedimentary rocks
-
flysch (1)
-
sedimentary rocks
-
clastic rocks
-
marl (1)
-
sandstone (1)
-
-
-
-
sedimentary structures
-
coprolites (1)
-
GeoRef Categories
Era and Period
Epoch and Age
Book Series
Date
Availability
Trieste-Pazin Basin
Paleoenvironmental reconstruction of the Middle Eocene Trieste-Pazin basin (Croatia) from benthic foraminiferal assemblages
Field photographs of the Eocene deposits from the Trieste-Pazin basin exami...
SEM photographs of planktonic foraminifera from the Trieste-Pazin basin. 1...
SEM photographs of benthic foraminifera from the Trieste-Pazin basin. 1a ...
Geological map of Istria showing localities of the sections studied within ...
Results of the quantitative and paleoecological analyses of the benthic for...
Results of the quantitative and paleoecological analyses of the benthic for...
Geological map of Istria showing locations of the sections studied within t...
Stratigraphic columns of measured sections of Eocene strata from the Triest...
Eocene palaeogeographical map (modified after Ron Bakley, NAU Geology), sho...
Paleogeographic reconstructions of the study area in Istria, Croatia: a) Pa...
Coprolite status of Coptocampylodon lineolatus Elliott 1963 (incertae sedis) from Middle Eocene deep-sea sediments of Istria (Croatia)
RECENT LITERATURE ON FORAMINIFERA
The planktic foraminifer Planorotalites in the Tethyan middle Eocene
Cr-spinel supply in the Brkini, Istrian and Krk Island flysch basins (Slovenia, Italy and Croatia)
HARPACTOCARCINUS FROM THE EOCENE OF ISTRIA, CROATIA, AND THE PALEOECOLOGY OF THE ZANTHOPSIDAE (CRUSTACEA: DECAPODA: BRACHYURA)
Historical Seismicity of the Rijeka Region (Northwest External Dinarides, Croatia)—Part II: The Klana Earthquakes of 1870
Integrated biomagnetostratigraphy of the Alano section (NE Italy): A proposal for defining the middle-late Eocene boundary
Abstract Flysch deposits are associated with the Outer Dinaride nappe front. They overlie Eocene platform carbonate to bathyal marl successions that subsequently cover Cretaceous platform carbonates of Apulia and the Dinaride nappes. Planktonic foraminifer biostratigraphy indicates Eocene age of flysch sedimentation. New calcareous nannofossil data reveal that several assemblages are present; besides the dominant Mid-Eocene species, Cretaceous, Paleocene, Oligocene and Miocene taxa were also identified throughout the entire flysch belt. Widespread occurrence of nannofossil species of zone NN4-6 indicates that flysch deposition lasted up to at least the Mid-Miocene. Ubiquitous occurrence of various pre-Miocene taxa demonstrates that extensive, possibly submarine, sediment recycling has occurred in the Cenozoic. As flysch remnants are typically sandwiched between thrust sheets, these new stratigraphic ages give a lower bracket on deformation age of the coastal range. The data provide a link between Cretaceous compression in the Bosnian Flysch and recent deformation in the Adriatic offshore area.
Palaeogene and Neogene
Abstract Over the last 65 Ma, our world assumed its modern shape. This timespan is divided into the Palaeogene Period, lasting from 65 to 23 Ma and the Neogene, which extends up to the present day (see Gradstein & Ogg (2004) and Gregory et al. (2005) for discussion about the Quaternary). Throughout the Cenozoic Era, Africa was moving towards Eurasia in a northward direction and with a counterclockwise rotation. Numerous microplates in the Mediterranean area were compressed, gradually fusing, and Eurasia underwent a shift from a marine archipelago to continental environments, related to the rising Alpine mountain chains ( Figs 17.1 & 17.2 ). Around the Eocene-Oligocene boundary, Africa's movement and subduction beneath the European plate led to the final disintegration of the ancient Tethys Ocean. The Indo-Pacific Ocean came into existence in the east while various relict marine basins remained in the west. In addition to the emerging early Mediterranean Sea, another relict of the closure of the Tethys was the vast Eurasian Paratethys Sea. The Oligocene and Miocene deposits of Central Europe are largely related to the North Sea in the north, the Mediterranean Sea in the south and the intermediate Paratethys Sea and its late Miocene to Pliocene successor Lake Pannon. At its maximum extent, the Paratethys extended from the Rhône Basin in France towards Inner Asia. Subsequently, it was partitioned into a smaller western part consisting of the Western and the Central Paratethys and the larger Eastern Paratethys. The Western Paratethys comprises the Rhône Basin and the Alpine Foreland Basin of Switzerland, Bavaria and Austria. The Central Paratethys extends from the Vienna Basin in the west to the Carpathian Foreland in the east where it abuts the area of the Eastern Paratethys. Eurasian ecosystems and landscapes were impacted by a complex pattern of changing seaways and land bridges between the Paratethys, the North Sea and the Mediterranean as well as the western Indo-Pacific (e.g. Rögl 1998 ; Popov et al. 2004 ). This geodynamically controlled biogeographic differentiation necessitates the establishment of different chronostratigraphic/geochronologic scales. The geodynamic changes in landscapes and environments were further amplified by drastic climate changes during the Cenozoic. The warm Cretaceous climate continued into the early Palaeogene with a distinct optimum near the Palaeocene-Eocene boundary (Palaeocene-Eocene Thermal Maximum) and the Early Eocene (Early Eocene Climate Optimum). A gradual decrease in temperature during the later Eocene culminated in the formation of the first icesheets in Antarctica around the Eocene-Oligocene boundary ( Zachos et al. 2001 ; Prothero et al. 2003 ). A renewed warming trend that began during the Late Oligocene continued into the Middle Miocene with a climax at the Mid-Miocene Climatic Optimum. The turning point at around 14.2 Ma led to the onset of the Middle Miocene Climate Transition indicated by the cooling of surface waters and the expansion of the East Antarctic icesheet ( Shevenell et al. 2004 ). A final trend reversal during the Early Pliocene is reflected by a gentle warming until 3.2 Ma ( Zachos et al. 2001 ) when the onset of permanent Arctic glaciation heralded the Pleistocene ice ages (see Litt et al. 2008 ). The Cenozoic history of Central Europe is chronicled in a dense pattern of Palaeogene and Neogene basins. In addition to the more stable North Sea Basin, the majority of these basins were strongly influenced by the Alpine compressive tectonics which caused a general uplift of Europe during the Cenozoic (see Froitzheim et al. 2008 ; Reicherter et al. 2008 ). The marginal position of the seas covering the area and the considerable synsedimentary geodynamic control resulted in incomplete stratigraphic sequences with frequent unconformities, erosional surfaces and depositional gaps. This chapter deals with the Paleogene and Neogene (“Tertiary”) geological development of Central Europe and its adjacent areas. It is structured according to the main geological regions relevant for the Cenozoic: (1) The European Plate; (2) the Alps and Alpine Foredeep; (3) the Carpathians, their foredeep and the Pannonian Basins System; and (4) the Southern Alps and Dinarides. Each subchapter is arranged from west to east, and north to south.