- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Cascade Range (1)
-
Deschutes River (1)
-
Europe
-
Southern Europe
-
Italy
-
Calabria Italy (1)
-
-
-
-
Mediterranean region (1)
-
North America (1)
-
United States
-
California
-
Amador County California (1)
-
-
Oregon
-
Deschutes County Oregon (1)
-
Jefferson County Oregon (1)
-
Lane County Oregon (1)
-
Willamette River (1)
-
-
-
-
igneous rocks
-
igneous rocks
-
volcanic rocks (1)
-
-
-
Primary terms
-
data processing (1)
-
Europe
-
Southern Europe
-
Italy
-
Calabria Italy (1)
-
-
-
-
geomorphology (1)
-
ground water (1)
-
hydrology (1)
-
igneous rocks
-
volcanic rocks (1)
-
-
Mediterranean region (1)
-
North America (1)
-
springs (1)
-
United States
-
California
-
Amador County California (1)
-
-
Oregon
-
Deschutes County Oregon (1)
-
Jefferson County Oregon (1)
-
Lane County Oregon (1)
-
Willamette River (1)
-
-
-
RHESSys model
Improving reproducibility of geoscience models with Sciunit
ABSTRACT For science to reliably support new discoveries, its results must be reproducible. Assessing reproducibility is a challenge in many fields—including the geosciences—that rely on computational methods to support these discoveries. Reproducibility in these studies is particularly difficult; the researchers conducting studies must agree to openly share research artifacts, provide documentation of underlying hardware and software dependencies, ensure that computational procedures executed by the original researcher are portable and execute in different environments, and, finally, verify if the results produced are consistent. Often these tasks prove to be tedious and challenging for researchers. Sciunit ( https://sciunit.run ) is a system for easily containerizing, sharing, and tracking deterministic computational applications across environments. Geoscience applications in the fields of hydrology, solid Earth, and space science have actively used Sciunit to encapsulate, port, and repeat workflows across computational environments. In this chapter, we provide a comprehensive survey of geoscience applications that have used Sciunit to improve sharing and reproducibility. We classify the applications based on their reproducibility requirements and show how Sciunit accommodates relevant interfaces and architectural components to support reproducibility requirements within each application. We aim to provide these applications as a Sciunit compendium of use cases for replicability, benchmarking, and improving the conduct of reproducible science in other fields.
Coupled Vegetation and Soil Moisture Dynamics Modeling in Heterogeneous and Sloping Terrains All rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher.
Fire and water: Volcanology, geomorphology, and hydrogeology of the Cascade Range, central Oregon
ABSTRACT This fi eld trip guide explores the interactions among the geologic evolution, hydrology, and fluvial geomorphology of the central Oregon Cascade Range. Key topics include the geologic control of hydrologic regimes on both the wet and dry sides of the Cascade Range crest, groundwater dynamics and interaction between surface and groundwater in young volcanic arcs, and interactions between rivers and lava flows. As we trace the Willamette and McKenzie Rivers back to source springs high in the young volcanic rocks of the Cascade Range, there is abundant evidence for the large permeability of young lava flows, as manifested in streams that dewater into lava flows, lava-dammed lakes in closed basins, and rivers that emerge from single springs. These dynamics contrast sharply with the older, lower permeability Western Cascades terrane and associated runoff-dominated fluvial systems. On the east side of the Cascades we encounter similar hydrologic characteristics resulting in complex interactions between surface water and groundwater as we follow the Deschutes River downstream to its confluence with the Crooked River. Here, deep canyons have cut through most of the permeable part of the geologic section, have been invaded by multiple large intracanyon lava flows, and are the locus of substantial regional groundwater discharge. The groundwater and surface-water interaction in the Deschutes Basin is further complicated by surface-water diversions and an extensive network of leaking irrigation canals. Our west-to-east transect offers an unparalleled opportunity to examine the co-evolution of the geology and hydrology of an active volcanic arc.