- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Africa
-
Central Africa
-
Angola (1)
-
Congo Democratic Republic (1)
-
-
-
Asia
-
Far East
-
China (1)
-
Malaysia (1)
-
Thailand (1)
-
-
Indian Peninsula
-
India (1)
-
-
-
Australasia
-
Australia (1)
-
-
Canada
-
Eastern Canada
-
Maritime Provinces
-
Nova Scotia
-
Cape Breton Island (1)
-
-
-
Newfoundland and Labrador
-
Newfoundland (1)
-
-
Quebec (1)
-
-
-
Europe (1)
-
Marathon Basin (1)
-
South America
-
Brazil (1)
-
-
United States
-
Idaho (1)
-
New York (1)
-
Oklahoma (1)
-
Texas (1)
-
-
-
commodities
-
heavy mineral deposits (1)
-
metal ores
-
rare earth deposits (1)
-
-
placers (1)
-
-
fossils
-
Chordata
-
Vertebrata (1)
-
-
Invertebrata
-
Arthropoda
-
Trilobitomorpha
-
Trilobita (1)
-
-
-
Brachiopoda (1)
-
Mollusca
-
Bivalvia (1)
-
Gastropoda (1)
-
-
-
microfossils
-
Chitinozoa (1)
-
Conodonta (2)
-
-
palynomorphs
-
Chitinozoa (1)
-
-
-
geologic age
-
Cenozoic
-
Quaternary
-
Pleistocene
-
middle Pleistocene (1)
-
-
-
-
Paleozoic
-
Cow Head Group (1)
-
Devonian
-
Levis Shale (1)
-
-
Ordovician
-
Lower Ordovician
-
Tremadocian (1)
-
-
Middle Ordovician
-
Dapingian (1)
-
Darriwilian (1)
-
-
-
-
-
minerals
-
oxides
-
ilmenite (1)
-
rutile (1)
-
-
phosphates
-
monazite (1)
-
xenotime (1)
-
-
silicates
-
orthosilicates
-
nesosilicates
-
zircon group
-
zircon (1)
-
-
-
-
-
-
Primary terms
-
Africa
-
Central Africa
-
Angola (1)
-
Congo Democratic Republic (1)
-
-
-
Asia
-
Far East
-
China (1)
-
Malaysia (1)
-
Thailand (1)
-
-
Indian Peninsula
-
India (1)
-
-
-
Australasia
-
Australia (1)
-
-
biogeography (1)
-
Canada
-
Eastern Canada
-
Maritime Provinces
-
Nova Scotia
-
Cape Breton Island (1)
-
-
-
Newfoundland and Labrador
-
Newfoundland (1)
-
-
Quebec (1)
-
-
-
Cenozoic
-
Quaternary
-
Pleistocene
-
middle Pleistocene (1)
-
-
-
-
Chordata
-
Vertebrata (1)
-
-
earthquakes (1)
-
Europe (1)
-
heavy mineral deposits (1)
-
Invertebrata
-
Arthropoda
-
Trilobitomorpha
-
Trilobita (1)
-
-
-
Brachiopoda (1)
-
Mollusca
-
Bivalvia (1)
-
Gastropoda (1)
-
-
-
metal ores
-
rare earth deposits (1)
-
-
paleoclimatology (1)
-
Paleozoic
-
Cow Head Group (1)
-
Devonian
-
Levis Shale (1)
-
-
Ordovician
-
Lower Ordovician
-
Tremadocian (1)
-
-
Middle Ordovician
-
Dapingian (1)
-
Darriwilian (1)
-
-
-
-
palynomorphs
-
Chitinozoa (1)
-
-
placers (1)
-
sea-level changes (1)
-
sediments
-
clastic sediments
-
alluvium (1)
-
-
-
South America
-
Brazil (1)
-
-
stratigraphy (1)
-
United States
-
Idaho (1)
-
New York (1)
-
Oklahoma (1)
-
Texas (1)
-
-
-
sediments
-
sediments
-
clastic sediments
-
alluvium (1)
-
-
-
Pipas Bay
Paleoenvironmental and Paleobiogeographical Implications of a Middle Pleistocene Mollusc Assemblage from the Marine Terraces of Baía Das Pipas, Southwest Angola
Middle Ordovician (late Dapingian–Darriwilian) conodonts from the Cow Head Group and Lower Head Formation, western Newfoundland, Canada 1 This article is one of a series of papers published in CJES Special Issue: In honour of Ward Neale on the theme of Appalachian and Grenvillian geology.
Tremadocian (Lower Ordovician) Sea-Level Changes and Biotas on the Avalon Microcontinent
Capturing Regional Variations of Hard‐Rock Attenuation in Europe
Abstract The Azores islands, owing to their complex geographical and geodynamic setting, are exposed to tsunami events associated with different triggering mechanisms, local or distant. Since the settlement of the Azores, in the fifteenth century, there have been numerous accounts that relate coastal area flooding episodes with unusually high waves that caused death and destruction. In this work is presented a review and a characterization of the different events registered in the archipelago that can be associated with tsunamigenic phenomena. For this purpose, diverse documentation was collected such as chronics, manuscripts, newspaper articles and magazines, scientific publications and international databases available online. Thus, new relevant information allowed better characterization of some events. Furthermore, it was possible to add new entries and to discard others included in previous compilations owing to a lack of quality in historical sources or instrumental records. Some teletsunamis, among them the 1 November 1755 which killed six people on Terceira Island, regional and local tsunamis were identified. Although the majority of these events result from tectonic sources, some were also triggered by landslides, such as the 9 July 1847 Quebrada Nova tsunami which killed 10 people on Flores and Corvo islands, and by meteorological phenomena.
Placer-Type Rare Earth Element Deposits
Abstract Ancient and modern types of sedimentary placer deposits formed in both alluvial and coastal environments have been signficant sources of the rare earth elements (REEs). The REE-bearing minerals in placer-type deposits are primarily monazite [(Ce,La,Nd,Th)PO4] and sometimes xenotime (YPO4), which are high-density (heavy) minerals that accumulate with the suite of heavy minerals. Monazite has been extracted from many heavy mineral placers as a coproduct of the economic recovery of associated industrial minerals, such as titanium oxide minerals (ilmenite, rutile), zircon, sillimanite, garnet, staurolite, and others. Xenotime has been produced from some alluvial deposits as a coproduct of tin (cassiterite) placer mining. Placers are mineral deposits formed by the mechanical concentration of minerals from weathered debris. Placers can be classified as eluvial, alluvial, eolian, beach, and fossil (paleo) deposit types. Monazite-bearing placer-type deposits can occur in residual weathering zones, beaches, rivers and streams, dunes, and offshore areas. The detrital mixture of sand, silt, clays, and heavy (dense) minerals deposited in placers are derived primarily from the erosion of crystalline rocks, mainly igneous rocks and moderate- to high-grade metamorphic rocks (amphibolite facies and higher). In fluvial settings, slope is an important factor for the concentration of heavy minerals from detritus. In coastal settings, the actions of waves, currents, tides, and wind are forces that concentrate and sort mineral particles based on size and density. Placer deposits containing monazite are known on all continents. In the past, by-product monazite has been recovered from placers in Australia, Brazil, India, Malaysia, Thailand, China, New Zealand, Sri Lanka, Indonesia, Zaire, Korea, and the United States. More recently, monazite has been recovered from coastal and alluvial placers in India, Malaysia, Sri Lanka, Thailand, and Brazil. In particular, along the southwestern and southeastern coasts of India, beach deposits rich in heavy minerals have experienced renewed exploration and development, partly to recover monazite for its REEs as well as its Th, to be used as a nuclear fuel source. Exploration designed to locate heavy mineral placers in coastal environments should identify bedrock terranes containing abundant high-grade metamorphic rocks or igneous rocks and identify ancient or modern coastal plains sourced by streams and rivers that drain these terranes. Trace elements associated with heavy mineral placers, useful as pathfinder elements, primarily include Ti, Hf, the REEs, Th, and U. Radiometric methods of geophysical exploration are useful in discovering and delineating deposits of heavy mineral sands. Several minerals in these deposits can produce a radiometric anomaly, but especially monazite, due to its high thorium content. Some beach districts in India and Brazil have been demonstrated as areas of high background radiation with potential dose exposure to humans and others, primarily due to the Th and U in detrital grains of monazite and zircon. Monazite- or xenotime-bearing placers offer several advantages as sources of REEs. Ancient and modern deposits of heavy mineral sands that formed in coastal settings can be voluminous with individual deposits as much as about 1 km wide and more than 5 km long. Grains of monazite or xenotime in placer deposits are mingled with other heavy minerals of industrial value. Monazite and xenotime are durable and often the heaviest minerals within the sand-silt deposit, which makes them relatively easy to mechanically separate. Thus, the REE ore minerals, monazite or xenotime, can be recovered from heavy mineral placers as a low-cost coproduct along with the economic production of the associated industrial minerals.