- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Arctic region (1)
-
Asia
-
Siberia (1)
-
-
Canada
-
Western Canada
-
British Columbia (1)
-
-
-
Europe
-
Central Europe
-
Germany
-
Baden-Wurttemberg Germany
-
Holzmaden region (1)
-
-
-
-
Western Europe
-
United Kingdom
-
Great Britain
-
England
-
Isle of Wight England (1)
-
Kent England (1)
-
-
-
-
-
-
South America
-
Peru (1)
-
-
-
elements, isotopes
-
carbon
-
C-13/C-12 (1)
-
-
isotope ratios (1)
-
isotopes
-
stable isotopes
-
C-13/C-12 (1)
-
-
-
-
fossils
-
Chordata
-
Vertebrata
-
Tetrapoda
-
Reptilia
-
Diapsida
-
Ichthyosauria (1)
-
-
-
-
-
-
Invertebrata
-
Echinodermata
-
Asterozoa
-
Stelleroidea
-
Ophiuroidea (1)
-
-
-
Crinozoa
-
Crinoidea (1)
-
-
-
Mollusca
-
Bivalvia
-
Pterioida
-
Pteriina
-
Inocerami
-
Inoceramidae
-
Inoceramus (1)
-
-
-
Pectinacea
-
Halobia (1)
-
Monotis (1)
-
-
-
-
-
Cephalopoda
-
Ammonoidea
-
Ammonites (1)
-
Dactylioceratidae (1)
-
-
-
-
Protista
-
Foraminifera (2)
-
-
-
microfossils
-
Conodonta (1)
-
-
-
geochronology methods
-
U/Pb (1)
-
-
geologic age
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous
-
Campanian (2)
-
Cenomanian (2)
-
Coniacian (1)
-
Maestrichtian (1)
-
Senonian (1)
-
Turonian (1)
-
-
-
Jurassic
-
Lower Jurassic
-
Toarcian (1)
-
-
Posidonia Shale (1)
-
-
Pucara Group (1)
-
Triassic
-
Upper Triassic
-
Norian (1)
-
Pardonet Formation (1)
-
Rhaetian (1)
-
-
-
-
-
minerals
-
silicates
-
orthosilicates
-
nesosilicates
-
zircon group
-
zircon (1)
-
-
-
-
-
-
Primary terms
-
absolute age (1)
-
Arctic region (1)
-
Asia
-
Siberia (1)
-
-
biogeography (1)
-
Canada
-
Western Canada
-
British Columbia (1)
-
-
-
carbon
-
C-13/C-12 (1)
-
-
Chordata
-
Vertebrata
-
Tetrapoda
-
Reptilia
-
Diapsida
-
Ichthyosauria (1)
-
-
-
-
-
-
Europe
-
Central Europe
-
Germany
-
Baden-Wurttemberg Germany
-
Holzmaden region (1)
-
-
-
-
Western Europe
-
United Kingdom
-
Great Britain
-
England
-
Isle of Wight England (1)
-
Kent England (1)
-
-
-
-
-
-
geochemistry (1)
-
Invertebrata
-
Echinodermata
-
Asterozoa
-
Stelleroidea
-
Ophiuroidea (1)
-
-
-
Crinozoa
-
Crinoidea (1)
-
-
-
Mollusca
-
Bivalvia
-
Pterioida
-
Pteriina
-
Inocerami
-
Inoceramidae
-
Inoceramus (1)
-
-
-
Pectinacea
-
Halobia (1)
-
Monotis (1)
-
-
-
-
-
Cephalopoda
-
Ammonoidea
-
Ammonites (1)
-
Dactylioceratidae (1)
-
-
-
-
Protista
-
Foraminifera (2)
-
-
-
isotopes
-
stable isotopes
-
C-13/C-12 (1)
-
-
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous
-
Campanian (2)
-
Cenomanian (2)
-
Coniacian (1)
-
Maestrichtian (1)
-
Senonian (1)
-
Turonian (1)
-
-
-
Jurassic
-
Lower Jurassic
-
Toarcian (1)
-
-
Posidonia Shale (1)
-
-
Pucara Group (1)
-
Triassic
-
Upper Triassic
-
Norian (1)
-
Pardonet Formation (1)
-
Rhaetian (1)
-
-
-
-
paleoecology (2)
-
paleogeography (2)
-
sea-level changes (2)
-
sedimentary rocks
-
carbonate rocks
-
chalk (1)
-
-
chemically precipitated rocks
-
phosphate rocks (1)
-
-
-
sedimentation (1)
-
South America
-
Peru (1)
-
-
-
sedimentary rocks
-
sedimentary rocks
-
carbonate rocks
-
chalk (1)
-
-
chemically precipitated rocks
-
phosphate rocks (1)
-
-
-
shell beds (1)
-
-
sediments
-
shell beds (1)
-
Oxytoma inaequivalvis
Examples of the macroinvertebrates discussed here, from SMNS 81841. A ) P ...
AN ICHTHYOSAUR CARCASS-FALL COMMUNITY FROM THE POSIDONIA SHALE (TOARCIAN) OF GERMANY
Summary of biostratigraphy and U-Pb geochronology for Late Triassic of the ...
Towards accurate numerical calibration of the Late Triassic: High-precision U-Pb geochronology constraints on the duration of the Rhaetian
BIOTIC AND ABIOTIC EVENTS OF THE LATE CRETACEOUS ARCTIC BIOGEOGRAPHICAL REALM
Late Triassic Bivalvia (Chiefly Halobiidae and Monotidae) from the Pardonet Formation, Williston Lake Area, Northeastern British Columbia, Canada
Secular variation in Late Cretaceous carbon isotopes: a new δ 13 C carbonate reference curve for the Cenomanian–Campanian (99.6–70.6 Ma)
Opening of the Hispanic Corridor and Early Jurassic bivalve biodiversity
Abstract The Hispanic Corridor is a postulated marine seaway linking the eastern Pacific and western Tethyan oceans as early as Early Jurassic times. Two existing hypotheses relate the Pliensbachian-Toarcian bivalve extinction and recovery to immigration of bivalve species through the Hispanic Corridor. The extinction hypothesis implies that, in South America, the Pliensbachian-Toarcian extinction can be partly explained by the immigration of bivalves through the Hispanic Corridor and subsequent competitive replacement. The recovery hypothesis states that, in NW Europe, the renewed rise in diversity in the late Toarcian/Aalenian was largely a consequence of immigration of taxa from Andean South America via the Hispanic Corridor. To test these hypotheses, I calculated immigration and origination rates of bivalves per million years. In both regions, early Pliensbachian to Aalenian immigration rates remained at low levels, thus disproving both hypotheses. By comparison, the origination of new species generally played a much more important role than immigration in controlling overall diversity of both regions. Future research should investigate if this is a more general pattern in the recovery of post-extinction biotas. The apparently global Pliensbachian-Toarcian diversity crisis may be best explained by a combination of physicochemical factors, invoking intense volcanism, sea-level highstand and widespread anoxia, as well as biological factors. Recovery from this mass extinction commenced when origination rates increased again, which, in the Andean basins, was in the Aalenian and in NW Europe, the late Toarcian.