1-20 OF 52 RESULTS FOR

Oktyabr'skoe Deposit

Results shown limited to content with bounding coordinates.
Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Modes of occurrence of hypogene anhydrite in the Oktyabr’skoe deposit. a, Section of sulfide–sulfate pegmatoid with a lens of metamorphogenic white anhydrite, black is carbonaceous substance, sample AN-25/26; b, c, sulfide–sulfate pegmatoids, samples AN-2-33 (b) and AN-2-14 (c); d, sulfide vein with acicular anhydrite in black serpentinites, sample AN-2-6; e, liquid intergrowth of chalcopyrite and anhydrite, sample KZ-593/681; f, g, sulfide–sulfate pegmatoids (black is serpentinite with carbonaceous substance), samples AN-2-5 (f) and AN-2-34 (g); h, i, anhydrite veins at the boundary with chalcopyrite (h) and pyrrhotite (i), samples AN-2-3 and Nester-1; j, k, green and violet anhydrite with disseminated pyrite from veins cutting the Tsentral’naya Shilki intrusion, samples OKG-65/259 (j) and OKG-65/263.5 (k); l, anhydrite vein with native-sulfur ingrowths (yellow) in dolomite, sample OV-25/505; m, graphic calcite ingrowths in anhydrite, schlieren T-56/385.5, without nicols. a–l, half-scaled; m, ×40.
Published: 01 August 2018
Fig. 6. Modes of occurrence of hypogene anhydrite in the Oktyabr’skoe deposit. a , Section of sulfide–sulfate pegmatoid with a lens of metamorphogenic white anhydrite, black is carbonaceous substance, sample AN-25/26; b , c , sulfide–sulfate pegmatoids, samples AN-2-33 ( b ) and AN-2-14 ( c
Image
Inclusions in hypogene anhydrites of the Oktyabr’skoe deposit. Scalebar 5 µm. Inclusions: a, two-phase, b, c, multiphase, d, melt, e, f, melt, with an ore phase, g, unsealed by shearing along the cleavage plane, BSE SEM image shows solid phases preserved in the vacuole, numerals mark the phase sampling points, h, energy spectra of the sampling points.
Published: 01 August 2018
Fig. 7. Inclusions in hypogene anhydrites of the Oktyabr’skoe deposit. Scalebar 5 µm. Inclusions: a , two-phase, b , c , multiphase, d , melt, e , f , melt, with an ore phase, g , unsealed by shearing along the cleavage plane, BSE SEM image shows solid phases preserved in the vacuole
Image
Modes of occurrence of metamorphogenic anhydrite in the Oktyabr’skoe deposit. a, Orange anhydrite veinlets in red and green marl, sample Koms-50/5; b, c, red anhydrite nodule (appearance and section), sample Tal-68; d, light gray anhydrite with red marl intercalates, sample XX-1; e, brecciated lilac anhydrite, sample KZ-593/1; f, white anhydrite from bed, sample KZ-592/800; g, lilac anhydrite in metamorphosed greenish-gray marls, sample Koms-2014/1; h, anhydrite vein in apomudstone spilosite, sample KZ-582/645; i, pyrrhotite veins in anhydrite with disseminated carbonaceous substance (black), sample KZ-431/626,7; j, contact of acicular anhydrite crystals with chalcopyrite–pyrrhotite zones in pyroxenite, sample Koms-41; k–m, carbonaceous substance (black) and pyrrhotite (cream) veins and zones in anhydrite (white), samples AN-02-4 (k), AN-02-9 (l), and AN-02-36 (m). a–g, half-scaled, h–m, scaled down three times.
Published: 01 August 2018
Fig. 5. Modes of occurrence of metamorphogenic anhydrite in the Oktyabr’skoe deposit. a , Orange anhydrite veinlets in red and green marl, sample Koms-50/5; b , c , red anhydrite nodule (appearance and section), sample Tal-68; d , light gray anhydrite with red marl intercalates, sample XX-1
Image
Ag–Au–Cu ternary diagram with compositions (at. fract.) of Cu-containing native gold and silver from different objects. 1, ultrabasites of the Agardag massif (southern Tuva, Russia) (Kudryavtseva and Kudryavtsev, 2003); 2, basite–ultrabasites of the Khurai–Zhalga massif (East Sayan) (Zhmodik et al., 2008); 3, Zelenoe deposit (East Sayan) (Zhmodik et al., 2008); 4, ultrabasites of the Ospa–Kitoi massif (Damdinov, 2004); 5, Wheaton Creek placer and Fifteen Miles ore occurrences (Canada) (Knight and Leitch, 2001); 6, 7, Talnakh and Oktyabr’skoe deposits (Razin and Begizov, 1973); 8, Sikhote-Alin’ ore occurrences (Kazachenko et al., 2008); 9, Berezovoe ore occurrence (Chekryzhov et al., 2011); 10, 11, Khaak-Sair and Saryg-Dash ore occurrences (Kuzhuget et al., 2012); 12, placer of the Konder alkali-ultrabasic massif (Nekrasov et al., 2001); 13, Batu Hijau porphyry Au–Cu deposit (Indonesia) (Arif and Baker, 2004); 14, Kerr-Adisson mine (Canada) (Knipe and Fleet, 1997); 15, Beni-Bousera deposit (Morocco) (Oen and Kieft, 1974); 16, Berezovskoe deposit (Vikent’eva and Tyukova, 2007); 17, Chelopech (Bulgaria) (Bonev et al., 2002); 18, Yuzhno-Yangikanskoe deposit (Uzbekistan) (Kulichikhina and Gubanov, 1975).
Published: 01 March 2014
) ( Zhmodik et al., 2008 ); 3 , Zelenoe deposit (East Sayan) ( Zhmodik et al., 2008 ); 4 , ultrabasites of the Ospa–Kitoi massif ( Damdinov, 2004 ); 5 , Wheaton Creek placer and Fifteen Miles ore occurrences (Canada) ( Knight and Leitch, 2001 ); 6 , 7 , Talnakh and Oktyabr’skoe deposits ( Razin
Image
Schematic geological map of the Oktyabr’skoe gold–quartz deposit, compiled after Dobryanskii (2002)*. 1, volcanoterrigenous deposits of the Chingiz Formation, 2, subvolcanic granitoid bodies, 3, diorites and gabbrodiorites of the Izinzyul’ complex, 4, silicification zones with scanty pyrite and arsenopyrite mineralization, 5, quartz veins with single pyrite and arsenopyrite phenocrysts, 6, area of hydrothermal-metasomatic rock alteration (listvenitization and beresitization), 7, crush zones.
Published: 01 November 2022
Fig. 5. Schematic geological map of the Oktyabr’skoe gold–quartz deposit, compiled after Dobryanskii (2002) * . 1, volcanoterrigenous deposits of the Chingiz Formation, 2 , subvolcanic granitoid bodies, 3 , diorites and gabbrodiorites of the Izinzyul’ complex, 4 , silicification zones
Image
E–W section of the southern part of the Oktyabr’skoe Pt–Cu–Ni deposit. 1, coal-bearing deposits C3–P2; 2, limestones D3; 3, metamorphosed deposits of the anhydrite–marl unit D2; 4, clay deposits D1; 5, carbonate–clay deposits S2; 6, hypogene-anhydrite veins; 7, dolerites; layered rock series of the Upper Talnakh intrusion: 8, metadiorites, 9, olivine-free, olivine-containing, and olivine gabbro-dolerites, 10, picritic and taxitic gabbro-dolerites, 11, black carbonaceous serpentinites; ores: 12, copper, 13, disseminated, 14, massive; 15, tectonic zone of western faults near the Kharaelakh River.
Published: 01 August 2018
Fig. 4. E–W section of the southern part of the Oktyabr’skoe Pt–Cu–Ni deposit. 1 , coal-bearing deposits C 3 –P 2 ; 2 , limestones D 3 ; 3 , metamorphosed deposits of the anhydrite–marl unit D 2 ; 4 , clay deposits D 1 ; 5 , carbonate–clay deposits S 2 ; 6 , hypogene-anhydrite veins; 7
Journal Article
Published: 01 March 2018
European Journal of Mineralogy (2018) 30 (2): 375–382.
... at the Oktyabr'skoe Cu-Ni-Pd-Pt deposit (Oktyabr'sky mine), Talnakh, Norilsk district, Siberia, Russia. It is a late-stage hydrothermal mineral associated with greenalite, chamosite, pectolite, ferroactinolite, calcite and fluorapatite. Genplesite occurs as equant, short prismatic or thick tabular hexagonal crystals...
FIGURES | View All (5)
Journal Article
Published: 01 August 2018
Russ. Geol. Geophys. (2018) 59 (8): 945–961.
...Fig. 6. Modes of occurrence of hypogene anhydrite in the Oktyabr’skoe deposit. a , Section of sulfide–sulfate pegmatoid with a lens of metamorphogenic white anhydrite, black is carbonaceous substance, sample AN-25/26; b , c , sulfide–sulfate pegmatoids, samples AN-2-33 ( b ) and AN-2-14 ( c...
FIGURES | View All (9)
Image
Composition of carbonates from deposits and ore occurrences of the Ozernoe-Vasil’evskoe graben-synclinal structure. Deposits: 1 — Ozernoe; 2 — Ozernoe, deep horizons; 3 — Vasil’evskoe; 4 — Vostochnoe; 5 — Pereval’noe; 6 — Oktyabr’skoe.
Published: 01 April 2005
Fig. 4. Composition of carbonates from deposits and ore occurrences of the Ozernoe-Vasil’evskoe graben-synclinal structure. Deposits: 1 — Ozernoe; 2 — Ozernoe, deep horizons; 3 — Vasil’evskoe; 4 — Vostochnoe; 5 — Pereval’noe; 6 — Oktyabr’skoe.
Image
Schematic occurrence of Fe-Mg-carbonates in the OOC. 1 — recent loose deposits; 2 — Mesozoic volcanogenic deposits; 3 — Lower Cambrian volcanosedimentary deposits; 4 — Upper Paleozoic granites (a) and granosyenites (b); 5 — Upper Paleozoic diorites and granodiorites; 6 — dolomites and Fe-dolomites with (FeO + MnO)/MgO < 1; 7 — ankerites and Fe-dolomites with (FeO + MnO)/MgO > 1; 8 — siderites; 9 — deposits and ore occurrences: 1 — Ozernoe, 2 — Vasil’evskoe, 3 — Oktyabr’skoe, 4 — Pereval’noe, 5 — Vostochnoe, 6 — Zvezdnoe, 7 — Arishinskoe, 8 — Gundui, 9 — Solnechnoe, 10 — Turkul, 11 — Gurvunur, 12 — Severny Gurvunur, 13 — Taezhnoe, 14 — Solongo, 15 — Nazarovskoe, 16 — Ul’zutui II, 17 — Ul’zutui I, 18 — Zapadny Turkul.
Published: 01 April 2005
— dolomites and Fe-dolomites with (FeO + MnO)/MgO < 1; 7 — ankerites and Fe-dolomites with (FeO + MnO)/MgO > 1; 8 — siderites; 9 — deposits and ore occurrences: 1 — Ozernoe, 2 — Vasil’evskoe, 3 — Oktyabr’skoe, 4 — Pereval’noe, 5 — Vostochnoe, 6 — Zvezdnoe, 7 — Arishinskoe, 8 — Gundui, 9
Image
Scheme illustrating the location of the area under study (a) and the simplified geological map (b) from (State Geological Map, 2006a, 2007a, 2016a, 2017a). b:1 – poorly defined quaternary deposits; 2 – Neogene basalts, basaltic andesites (Ayakit volcanic complex); 3 – Upper Cretaceous volcanogenic rocks, andesites, dacites (Omeldinsky volcanic complex), dacites, rhyolites (Maloomeldinsky volcanic complex), their extrusive and subvolcanic analogs; 4 – Upper Cretaceous sedimentary rocks (Gorinskaya, Pionerskaya, Pivanskaya, and Gornoprotokskaya formations); 5 – Upper Jurassic sedimentary rocks (Padalinskaya and Silinskaya formations); 6 – Lower–Middle Jurassic sedimentary rocks (Mikhalitsinskaya, Ulbinskaya, and El’gonskaya formations); 7 – upper Carboniferous sedimentary rocks (Krestovaya and Berenda formations); 8 – early Paleogene granites (Bekchiul intrusive complex); 9 – Late Cretaceous intrusions: granodiorites, diorites, and granites (Lower Amur and Evur intrusive complexes); 10 – main faults; 11 – bedrock gold deposits: (1 – Albazino, 2 – Chulbatkan; 3 – Oktyabr’skoe, 4 – Pokrovo-Troitskoe, 5 – Agnie-Afanas’evskoe, 6 – Dyappe, 7 – Martem’yanovskoe, 8 – Uchaminskoe, 9 – Delken); 12 – gold ore occurrences.
Published: 01 December 2023
intrusive complex); 9 – Late Cretaceous intrusions: granodiorites, diorites, and granites (Lower Amur and Evur intrusive complexes); 10 – main faults; 11 – bedrock gold deposits: (1 – Albazino, 2 – Chulbatkan; 3 – Oktyabr’skoe, 4 – Pokrovo-Troitskoe, 5 – Agnie-Afanas’evskoe, 6 – Dyappe, 7
Journal Article
Published: 15 April 2024
Mineralogical Magazine (2024) 88 (4): 351–368.
... N ( 2018 ) Unique PGE-Cu-Ni Oktyabr'skoe Deposit (Noril'sk Area, Siberia, Russia): new data on its structure and mineralization . Pp. 253 – 255 in: Proceedings of the 1st Springer Conference of the Arabian Journal of Geosciences (CAJG-1), Tunisia 2018 . https://doi.org/10.1007...
FIGURES | View All (17)
Journal Article
Published: 01 November 2022
Russ. Geol. Geophys. (2022) 63 (11): 1300–1312.
...Fig. 5. Schematic geological map of the Oktyabr’skoe gold–quartz deposit, compiled after Dobryanskii (2002) * . 1, volcanoterrigenous deposits of the Chingiz Formation, 2 , subvolcanic granitoid bodies, 3 , diorites and gabbrodiorites of the Izinzyul’ complex, 4 , silicification zones...
FIGURES | View All (6)
Image
A scheme of mineralization in the Ozernoe ore cluster. Based on the data of the 1976 Uda-Vitim expedition. 1 — volcanosedimentary rocks (Є1); 2 — leucocratic granites (PZ3); 3 — diorites, granodiorites (PZ3); 4 — trachyte porphyries and their tuffs (T); 5–9 — genetic types of deposits. Hydrothermal-sedimentary: 5 — Fe-Mn-carbonate-oxide, 6 — sulfide polymetallic (pyrite-polymetallic), 7 — sulfide-Fe-Mn-carbonate-oxide. Altered hydrothermal-sedimentary (skarned, superposition of Cu-Ba hydrothermal mineralization); 8 — Fe-Mn-carbonate-oxide, 9 — sulfide-polymetallic and sulfide-Fe-Mn-oxide; 10 — master faults; 11 — slave faults; 12 — geologic boundaries. Deposits and ore occurrences: 1 — Turkul, 2 — Solnechnoe, 3 — West Turkul, 4 — Gurvunur, 5 — Gundui, 6 — Arishinskoe, 7 — North Gurvunur, 8 — Ozernoe, 9 — Vostochnoe, 10 — Pereval’noe, 11 — Taezhnoe, 12 — Dal’nee, 13 — Zvezdnoe, 14 — Priozernoe, 15 — Maiskoe, 16 — Vasil’evskoe, 17 — Oktyabr’skoe, 18 — Magnetitovoe (Solongo), 19 — Nazarovskoe, 20 — Yuzhno-Gematitovoe, 21 — Yubileinoe, 22 — Uzul’tui-II, 24 — Uzul’tui-I, 25 — Severo-Magnetitovoe, 26 — South Gundui, 27 — Promezhutochnoe.
Published: 01 October 2003
types of deposits. Hydrothermal-sedimentary: 5 — Fe-Mn-carbonate-oxide, 6 — sulfide polymetallic (pyrite-polymetallic), 7 — sulfide-Fe-Mn-carbonate-oxide. Altered hydrothermal-sedimentary (skarned, superposition of Cu-Ba hydrothermal mineralization); 8 — Fe-Mn-carbonate-oxide, 9 — sulfide
Journal Article
Published: 01 March 2014
Russ. Geol. Geophys. (2014) 55 (3): 349–360.
...) ( Zhmodik et al., 2008 ); 3 , Zelenoe deposit (East Sayan) ( Zhmodik et al., 2008 ); 4 , ultrabasites of the Ospa–Kitoi massif ( Damdinov, 2004 ); 5 , Wheaton Creek placer and Fifteen Miles ore occurrences (Canada) ( Knight and Leitch, 2001 ); 6 , 7 , Talnakh and Oktyabr’skoe deposits ( Razin...
FIGURES | View All (7)
Journal Article
Published: 01 April 2005
Russ. Geol. Geophys. (2005) 46 (4): 383–397.
...Fig. 4. Composition of carbonates from deposits and ore occurrences of the Ozernoe-Vasil’evskoe graben-synclinal structure. Deposits: 1 — Ozernoe; 2 — Ozernoe, deep horizons; 3 — Vasil’evskoe; 4 — Vostochnoe; 5 — Pereval’noe; 6 — Oktyabr’skoe. ...
FIGURES | View All (11)
Journal Article
Published: 01 December 2023
Russ. Geol. Geophys. (2023) 64 (12): 1481–1494.
... intrusive complex); 9 – Late Cretaceous intrusions: granodiorites, diorites, and granites (Lower Amur and Evur intrusive complexes); 10 – main faults; 11 – bedrock gold deposits: (1 – Albazino, 2 – Chulbatkan; 3 – Oktyabr’skoe, 4 – Pokrovo-Troitskoe, 5 – Agnie-Afanas’evskoe, 6 – Dyappe, 7...
FIGURES | View All (8)
Journal Article
Published: 01 June 2000
Russ. Geol. Geophys. (2000) 41 (6): 765–771.
... of boundaries ofglaciations and sea transgressions in the Late Pleistocene in northern West Siberia and on the North Siberian Lowland. 1 – Kazantsevo Sea (Stage 5e), 2 – Karga sea (Substages 3.1 and 33), 3 – occurrence of: a – well-explored sections of the Kazantsevo deposits; b – Karga deposits; 4...
FIGURES | View All (4)
Journal Article
Journal: Geology
Published: 17 August 2023
Geology (2023) 51 (11): 1027–1032.
... elongate magma fingers at the margin of the Shonkin Sag laccolith (MT, USA) : Journal of Structural Geology , v. 169 , https://doi.org/10.1016/j.jsg.2023.104829 . Krivolutskaya , N.A. , et al ., 2018 , Geology of the western flanks of the Oktyabr’skoe deposit, Noril’sk district, Russia...
FIGURES | View All (4)
Journal Article
Published: 01 April 2015
Russ. Geol. Geophys. (2015) 56 (4): 611–630.
... Formation. The dominant conodont species Scandodus pseudoquadratus (Dr. et Jones) etc. were found in the upper part of the formation (BH-38) at the Oktyabr’skoe deposit, where argillaceous dolomites and sandstones alternate ( Byalyi and Stepanova, 2010 ). In the south of this site, in the Buluktui Village...
FIGURES | View All (11)