Update search
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
Format
Article Type
Journal
Publisher
Section
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Africa
-
Central Africa
-
Angola (1)
-
-
East Africa
-
Mozambique (1)
-
-
Southern Africa
-
Kalahari Craton (1)
-
Namibia (1)
-
Orange River (1)
-
-
Zambezi Valley (1)
-
-
Asia
-
Far East
-
China
-
Sichuan China
-
Wenchuan China (1)
-
-
South China Block (1)
-
Xizang China (6)
-
Yunnan China
-
Ailao Shan (1)
-
-
-
Taiwan
-
Chelungpu Fault (1)
-
-
-
Ganges River (1)
-
Himalayas
-
Garhwal Himalayas (2)
-
High Himalayan Crystallines (6)
-
Kumaun Himalayas (2)
-
Mount Everest (1)
-
Nanga Parbat (1)
-
Zanskar Range (3)
-
-
Indian Peninsula
-
Bhutan (3)
-
Ganga Basin (1)
-
India
-
Northeastern India (1)
-
Shillong Plateau (1)
-
Uttar Pradesh India (1)
-
Uttarakhand India
-
Garhwal Himalayas (2)
-
-
Yamuna River (1)
-
-
Jammu and Kashmir
-
Kashmir (1)
-
Ladakh (1)
-
Nanga Parbat (1)
-
-
Nepal
-
Kathmandu Nepal (1)
-
-
Pakistan (2)
-
Thar Desert (1)
-
-
Indus-Yarlung Zangbo suture zone (1)
-
Main Central Thrust (13)
-
Siwalik Range (2)
-
Tibetan Plateau (4)
-
-
Australasia
-
New Zealand (1)
-
-
Europe
-
Alps
-
French Alps (1)
-
Swiss Alps (1)
-
Western Alps
-
Dauphine Alps
-
Pelvoux Massif (1)
-
-
-
-
Brianconnais Zone (1)
-
Central Europe
-
Switzerland
-
Swiss Alps (1)
-
-
-
Pyrenees
-
Spanish Pyrenees (1)
-
-
Southern Europe
-
Greece (1)
-
Iberian Peninsula
-
Spain
-
Spanish Pyrenees (1)
-
-
-
Italy
-
Abruzzi Italy (1)
-
Apennines
-
Central Apennines (1)
-
-
Lombardy Italy (1)
-
Po River (1)
-
-
-
Western Europe
-
France
-
Dauphine Alps
-
Pelvoux Massif (1)
-
-
French Alps (1)
-
-
-
-
Indian Ocean
-
Bay of Bengal (1)
-
Bengal Fan (2)
-
-
International Ocean Discovery Program
-
Expedition 353 (1)
-
Expedition 354 (1)
-
-
Mediterranean region (1)
-
North America
-
Basin and Range Province (1)
-
Mississippi River basin (1)
-
Missouri River basin (1)
-
-
Red River Fault (1)
-
Sierra Nevada (2)
-
South America
-
Andes
-
Central Andes (1)
-
Eastern Cordillera (1)
-
-
Bolivia
-
La Paz Bolivia (1)
-
-
Colombia (1)
-
Peru (1)
-
-
South Island (1)
-
Southern Alps (1)
-
United States
-
Alaska
-
Alaska Range (1)
-
-
California
-
Feather River (1)
-
San Gabriel Mountains (2)
-
Southern California (2)
-
-
Oregon (1)
-
-
Yuba River (1)
-
-
elements, isotopes
-
carbon
-
C-13/C-12 (1)
-
C-14 (1)
-
-
chemical ratios (1)
-
hydrogen
-
D/H (1)
-
-
isotope ratios (10)
-
isotopes
-
radioactive isotopes
-
Al-26 (2)
-
Be-10 (4)
-
C-14 (1)
-
Pb-206/Pb-204 (1)
-
Pb-207/Pb-204 (1)
-
Pb-208/Pb-204 (1)
-
-
stable isotopes
-
C-13/C-12 (1)
-
D/H (1)
-
Hf-177/Hf-176 (2)
-
Nd-144/Nd-143 (4)
-
O-18/O-16 (1)
-
Pb-206/Pb-204 (1)
-
Pb-207/Pb-204 (1)
-
Pb-208/Pb-204 (1)
-
S-34/S-32 (1)
-
Sr-87/Sr-86 (3)
-
-
-
metals
-
alkaline earth metals
-
beryllium
-
Be-10 (4)
-
-
strontium
-
Sr-87/Sr-86 (3)
-
-
-
aluminum
-
Al-26 (2)
-
-
germanium (1)
-
gold (1)
-
hafnium
-
Hf-177/Hf-176 (2)
-
-
lead
-
Pb-206/Pb-204 (1)
-
Pb-207/Pb-204 (1)
-
Pb-208/Pb-204 (1)
-
-
rare earths
-
neodymium
-
Nd-144/Nd-143 (4)
-
-
-
-
oxygen
-
O-18/O-16 (1)
-
-
silicon (1)
-
sulfur
-
S-34/S-32 (1)
-
-
-
fossils
-
Invertebrata
-
Protista
-
Foraminifera (1)
-
-
-
microfossils (1)
-
-
geochronology methods
-
(U-Th)/He (1)
-
Ar/Ar (10)
-
exposure age (3)
-
fission-track dating (5)
-
optical dating (1)
-
optically stimulated luminescence (2)
-
paleomagnetism (1)
-
Pb/Th (2)
-
Rb/Sr (1)
-
thermochronology (9)
-
U/Pb (11)
-
U/Th/Pb (4)
-
-
geologic age
-
Anthropocene (1)
-
Cenozoic
-
Quaternary
-
Holocene
-
lower Holocene (1)
-
upper Holocene (1)
-
-
Pleistocene
-
upper Pleistocene (2)
-
-
-
Siwalik System (1)
-
Tertiary
-
Neogene
-
Miocene
-
lower Miocene (1)
-
middle Miocene (1)
-
upper Miocene
-
Tortonian (1)
-
-
-
Pliocene (3)
-
-
Paleogene
-
Eocene (3)
-
Oligocene (6)
-
-
-
upper Cenozoic (2)
-
-
Mesozoic (4)
-
Paleozoic
-
Ordovician (1)
-
-
Phanerozoic (1)
-
Precambrian
-
Archean
-
Neoarchean (1)
-
-
upper Precambrian
-
Proterozoic
-
Neoproterozoic (1)
-
Paleoproterozoic (2)
-
-
-
-
-
igneous rocks
-
extrusive rocks (1)
-
igneous rocks
-
plutonic rocks
-
granites
-
leucogranite (3)
-
-
-
volcanic rocks
-
glasses
-
volcanic glass (1)
-
-
pyroclastics
-
ignimbrite (1)
-
-
-
-
ophiolite (1)
-
-
metamorphic rocks
-
metamorphic rocks
-
gneisses
-
orthogneiss (1)
-
paragneiss (1)
-
-
marbles (1)
-
metaigneous rocks
-
serpentinite (1)
-
-
metasedimentary rocks
-
metapelite (2)
-
paragneiss (1)
-
-
metasomatic rocks
-
serpentinite (1)
-
-
migmatites (2)
-
mylonites (1)
-
quartzites (2)
-
schists
-
blueschist (1)
-
-
-
ophiolite (1)
-
turbidite (1)
-
-
minerals
-
oxides
-
rutile (1)
-
-
phosphates
-
apatite (5)
-
monazite (7)
-
xenotime (1)
-
-
silicates
-
framework silicates
-
feldspar group
-
alkali feldspar
-
K-feldspar (1)
-
-
-
silica minerals
-
quartz (3)
-
-
-
orthosilicates
-
nesosilicates
-
garnet group (2)
-
kyanite (2)
-
zircon group
-
zircon (14)
-
-
-
-
sheet silicates
-
clay minerals (1)
-
mica group
-
biotite (1)
-
muscovite (6)
-
phlogopite (1)
-
-
-
-
sulfides
-
pyrite (1)
-
-
-
Primary terms
-
absolute age (26)
-
Africa
-
Central Africa
-
Angola (1)
-
-
East Africa
-
Mozambique (1)
-
-
Southern Africa
-
Kalahari Craton (1)
-
Namibia (1)
-
Orange River (1)
-
-
Zambezi Valley (1)
-
-
Asia
-
Far East
-
China
-
Sichuan China
-
Wenchuan China (1)
-
-
South China Block (1)
-
Xizang China (6)
-
Yunnan China
-
Ailao Shan (1)
-
-
-
Taiwan
-
Chelungpu Fault (1)
-
-
-
Ganges River (1)
-
Himalayas
-
Garhwal Himalayas (2)
-
High Himalayan Crystallines (6)
-
Kumaun Himalayas (2)
-
Mount Everest (1)
-
Nanga Parbat (1)
-
Zanskar Range (3)
-
-
Indian Peninsula
-
Bhutan (3)
-
Ganga Basin (1)
-
India
-
Northeastern India (1)
-
Shillong Plateau (1)
-
Uttar Pradesh India (1)
-
Uttarakhand India
-
Garhwal Himalayas (2)
-
-
Yamuna River (1)
-
-
Jammu and Kashmir
-
Kashmir (1)
-
Ladakh (1)
-
Nanga Parbat (1)
-
-
Nepal
-
Kathmandu Nepal (1)
-
-
Pakistan (2)
-
Thar Desert (1)
-
-
Indus-Yarlung Zangbo suture zone (1)
-
Main Central Thrust (13)
-
Siwalik Range (2)
-
Tibetan Plateau (4)
-
-
Australasia
-
New Zealand (1)
-
-
bibliography (2)
-
carbon
-
C-13/C-12 (1)
-
C-14 (1)
-
-
Cenozoic
-
Quaternary
-
Holocene
-
lower Holocene (1)
-
upper Holocene (1)
-
-
Pleistocene
-
upper Pleistocene (2)
-
-
-
Siwalik System (1)
-
Tertiary
-
Neogene
-
Miocene
-
lower Miocene (1)
-
middle Miocene (1)
-
upper Miocene
-
Tortonian (1)
-
-
-
Pliocene (3)
-
-
Paleogene
-
Eocene (3)
-
Oligocene (6)
-
-
-
upper Cenozoic (2)
-
-
climate change (5)
-
crust (6)
-
data processing (3)
-
deformation (17)
-
diagenesis (1)
-
earthquakes (4)
-
Europe
-
Alps
-
French Alps (1)
-
Swiss Alps (1)
-
Western Alps
-
Dauphine Alps
-
Pelvoux Massif (1)
-
-
-
-
Brianconnais Zone (1)
-
Central Europe
-
Switzerland
-
Swiss Alps (1)
-
-
-
Pyrenees
-
Spanish Pyrenees (1)
-
-
Southern Europe
-
Greece (1)
-
Iberian Peninsula
-
Spain
-
Spanish Pyrenees (1)
-
-
-
Italy
-
Abruzzi Italy (1)
-
Apennines
-
Central Apennines (1)
-
-
Lombardy Italy (1)
-
Po River (1)
-
-
-
Western Europe
-
France
-
Dauphine Alps
-
Pelvoux Massif (1)
-
-
French Alps (1)
-
-
-
-
faults (31)
-
folds (4)
-
foliation (5)
-
geochemistry (9)
-
geochronology (8)
-
geomorphology (21)
-
geophysical methods (1)
-
ground water (4)
-
heat flow (1)
-
hydrogen
-
D/H (1)
-
-
hydrology (11)
-
igneous rocks
-
plutonic rocks
-
granites
-
leucogranite (3)
-
-
-
volcanic rocks
-
glasses
-
volcanic glass (1)
-
-
pyroclastics
-
ignimbrite (1)
-
-
-
-
inclusions (1)
-
Indian Ocean
-
Bay of Bengal (1)
-
Bengal Fan (2)
-
-
intrusions (3)
-
Invertebrata
-
Protista
-
Foraminifera (1)
-
-
-
isotopes
-
radioactive isotopes
-
Al-26 (2)
-
Be-10 (4)
-
C-14 (1)
-
Pb-206/Pb-204 (1)
-
Pb-207/Pb-204 (1)
-
Pb-208/Pb-204 (1)
-
-
stable isotopes
-
C-13/C-12 (1)
-
D/H (1)
-
Hf-177/Hf-176 (2)
-
Nd-144/Nd-143 (4)
-
O-18/O-16 (1)
-
Pb-206/Pb-204 (1)
-
Pb-207/Pb-204 (1)
-
Pb-208/Pb-204 (1)
-
S-34/S-32 (1)
-
Sr-87/Sr-86 (3)
-
-
-
magmas (1)
-
Mediterranean region (1)
-
Mesozoic (4)
-
metals
-
alkaline earth metals
-
beryllium
-
Be-10 (4)
-
-
strontium
-
Sr-87/Sr-86 (3)
-
-
-
aluminum
-
Al-26 (2)
-
-
germanium (1)
-
gold (1)
-
hafnium
-
Hf-177/Hf-176 (2)
-
-
lead
-
Pb-206/Pb-204 (1)
-
Pb-207/Pb-204 (1)
-
Pb-208/Pb-204 (1)
-
-
rare earths
-
neodymium
-
Nd-144/Nd-143 (4)
-
-
-
-
metamorphic rocks
-
gneisses
-
orthogneiss (1)
-
paragneiss (1)
-
-
marbles (1)
-
metaigneous rocks
-
serpentinite (1)
-
-
metasedimentary rocks
-
metapelite (2)
-
paragneiss (1)
-
-
metasomatic rocks
-
serpentinite (1)
-
-
migmatites (2)
-
mylonites (1)
-
quartzites (2)
-
schists
-
blueschist (1)
-
-
-
metamorphism (11)
-
North America
-
Basin and Range Province (1)
-
Mississippi River basin (1)
-
Missouri River basin (1)
-
-
orogeny (8)
-
oxygen
-
O-18/O-16 (1)
-
-
paleoclimatology (4)
-
paleogeography (5)
-
paleomagnetism (1)
-
Paleozoic
-
Ordovician (1)
-
-
Phanerozoic (1)
-
phase equilibria (2)
-
plate tectonics (8)
-
Precambrian
-
Archean
-
Neoarchean (1)
-
-
upper Precambrian
-
Proterozoic
-
Neoproterozoic (1)
-
Paleoproterozoic (2)
-
-
-
-
remote sensing (2)
-
sedimentary rocks
-
clastic rocks
-
conglomerate (2)
-
sandstone (1)
-
-
-
sedimentary structures
-
planar bedding structures
-
sand bodies (1)
-
-
-
sedimentation (10)
-
sediments
-
clastic sediments
-
alluvium (1)
-
boulders (1)
-
clay (1)
-
gravel (3)
-
mud (1)
-
pebbles (2)
-
sand (5)
-
silt (1)
-
-
marine sediments (1)
-
-
silicon (1)
-
South America
-
Andes
-
Central Andes (1)
-
Eastern Cordillera (1)
-
-
Bolivia
-
La Paz Bolivia (1)
-
-
Colombia (1)
-
Peru (1)
-
-
springs (4)
-
structural analysis (9)
-
sulfur
-
S-34/S-32 (1)
-
-
tectonics
-
neotectonics (11)
-
-
thermal waters (4)
-
United States
-
Alaska
-
Alaska Range (1)
-
-
California
-
Feather River (1)
-
San Gabriel Mountains (2)
-
Southern California (2)
-
-
Oregon (1)
-
-
weathering (5)
-
-
sedimentary rocks
-
molasse (1)
-
sedimentary rocks
-
clastic rocks
-
conglomerate (2)
-
sandstone (1)
-
-
-
turbidite (1)
-
-
sedimentary structures
-
channels (10)
-
sedimentary structures
-
planar bedding structures
-
sand bodies (1)
-
-
-
-
sediments
-
sediments
-
clastic sediments
-
alluvium (1)
-
boulders (1)
-
clay (1)
-
gravel (3)
-
mud (1)
-
pebbles (2)
-
sand (5)
-
silt (1)
-
-
marine sediments (1)
-
-
turbidite (1)
-
GeoRef Categories
Era and Period
Epoch and Age
Book Series
Date
Availability
Marsyandi River
Changes of bedload characteristics along the Marsyandi River (central Nepal): Implications for understanding hillslope sediment supply, sediment load evolution along fluvial networks, and denudation in active orogenic belts Available to Purchase
Understanding and quantifying fluvial transport and bedrock abrasion processes have become major concerns in modeling landform response to tectonic and climatic forcing. Recent theoretical and experimental investigations have in particular stressed the importance of sediment supply and size in controlling bedrock incision rate. Many studies on the downstream evolution of pebble size have focused on unraveling the respective roles of selective sorting and abrasion, without paying much attention to sediment sources. In order to track sediment supply and characteristics from source to sink in an active tectonic setting, where long-term selective deposition can be excluded, we systematically measured sediment size and lithology on gravel bars along the Marsyandi River and its tributaries (Himalayas of central Nepal), and also in sediment source material from hillslopes (landslides, moraines, terrace deposits). The downstream evolution in lithological distribution is found to be in close agreement with common views on pebble abrasion and present views on denudation in the range: (1) pebbles from the more rapidly uplifted and eroded Higher Himalayan gneissic units are over-represented, due to their major contribution to sediment influx, (2) easily erodible lithologies such as schists, sandstones, and limestone are under-represented relative to resistant rock types like quartzite. More surprisingly, we observe a general downstream coarsening of gravel bar material along the middle and lower Marsyandi River, whereas downstream sediment fining is typical of most river systems. A simple integrative model that tracks pebbles from hillslope to the main stem of the river and includes abrasion coefficients for the different Himalayan lithologies and size distribution of hillslopes sediment supplies accounts for both changing lithologic proportion along the Marsyandi and for the downstream coarsening of gravel bar material. This coarsening mainly results from differences in sediment sources along the Marsyandi Valley, in particular from differences in size distributions of landslide and moraine material. However, the median pebble size of subsurface material in gravel bars is coarser than median size of the blocky material in the source. The choice of the measurement methods and their potential bias are discussed but cannot explain this surprising feature displayed by our measurements. We suspect that due to sediment transport modalities in active tectonic settings, the subpavement grain-size distribution on gravel bars is not representative of the average bed-load size distribution. Consequently, pebble abrasion is more easily demonstrated by description of pebble lithology than by the downstream evolution of pebble size. Our study also shows, in contrast with previous studies, that experimentally derived abrasion coefficients can account for the downstream evolution of pebbles without calling for additional fining processes. We conclude that the eroded lithology and hillslope sediment source exert a major influence on the downstream evolution of sediment characteristics, on bedload ratio, and probably on bedrock erosion efficiency. These conclusions have important implications in terms of river profile evolution, landscape denudation, internal erosion coupling, and the response of the fluvial network to glacial-interglacial fluctuations.
Figure 1. Map of Marsyandi River study area showing locations of cosmogenic... Available to Purchase
Hydrothermal source of radiogenic Sr to Himalayan rivers Available to Purchase
Downstream development of a detrital cooling-age signal: Insights from 40 Ar/ 39 Ar muscovite thermochronology in the Nepalese Himalaya Available to Purchase
The character and distribution of cooling ages in modern river sediment provide useful constraints on rates and patterns of uplift and erosion within actively deforming mountain ranges. Such sediment effectively samples all locations within the catchment area, irrespective of remoteness. We evaluate how successfully detrital cooling ages may be used to constrain hinterland erosion rates by examining the modern catchment of the Marsyandi River in central Nepal. Over the 100–200-km-length scale of the catchment, laser fusion 40 Ar/ 39 Ar data for detrital muscovite collected from 12 separate sites illustrate the downstream development of a detrital cooling-age signal that is both systematic and representative of the contributing area. Comparisons of paired samples indicate that, at short spatial (tens of meters) and temporal (hundreds of years) scales, the detrital cooling-age signal is consistent. The distribution of bedrock cooling ages in a subcatchment and the resulting detrital signal at the catchment mouth can be modeled as a function of the erosion rate, relief, hypsometry, catchment area, and muscovite distribution. Given that independent constraints are available for most of these variables, the detrital age signal should be a robust indication of the spatially averaged erosion rate. In the Marsyandi, our model predicts erosion rate differences of approximately twofold, with higher rates (>2 mm/yr) along the southern topographic front of the Himalaya.