- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Atlantic Ocean
-
North Atlantic
-
North Sea
-
East Shetland Basin (1)
-
Viking Graben (1)
-
-
-
-
Caledonides (1)
-
Chalk Aquifer (1)
-
Europe
-
Central Europe
-
Germany (1)
-
-
North Sea Coast (2)
-
Western Europe
-
France
-
Drome France (1)
-
Paris Basin (1)
-
-
Netherlands (1)
-
Scandinavia
-
Denmark (1)
-
-
United Kingdom
-
Great Britain
-
England
-
Alston Block (1)
-
Cheshire England (1)
-
Derbyshire England (1)
-
Dorset England (1)
-
East Anglia
-
Norfolk England (2)
-
-
East Midlands (4)
-
Gloucestershire England (2)
-
Isle of Wight England (1)
-
Kent England
-
Folkestone England (1)
-
-
Lancashire England (1)
-
Lincolnshire England (4)
-
London Basin (1)
-
Pennines (1)
-
Staffordshire England (1)
-
Wessex Basin (2)
-
Worcestershire England (1)
-
Yorkshire England
-
North Yorkshire England
-
York England (1)
-
-
-
-
Scotland
-
Moray Firth (2)
-
-
Wales (1)
-
-
Northern Ireland (1)
-
-
-
-
Lake District (1)
-
Midlands (2)
-
North Sea region (3)
-
United States
-
Paradox Basin (1)
-
Texas
-
Tarrant County Texas
-
Fort Worth Texas (1)
-
-
-
Utah (1)
-
-
-
commodities
-
bitumens (1)
-
energy sources (1)
-
mineral deposits, genesis (1)
-
oil and gas fields (5)
-
petroleum
-
natural gas
-
shale gas (1)
-
-
-
-
elements, isotopes
-
carbon
-
C-13/C-12 (4)
-
-
isotope ratios (5)
-
isotopes
-
stable isotopes
-
C-13/C-12 (4)
-
O-18/O-16 (2)
-
-
-
metals
-
actinides
-
thorium (1)
-
uranium (1)
-
-
alkali metals
-
potassium (1)
-
-
-
oxygen
-
O-18/O-16 (2)
-
-
-
fossils
-
borings (1)
-
burrows (1)
-
Chordata
-
Vertebrata
-
Tetrapoda
-
Reptilia
-
Diapsida
-
Ichthyosauria (1)
-
Sauropterygia
-
Plesiosauria (1)
-
-
-
-
-
-
-
ichnofossils
-
Chondrites ichnofossils (1)
-
Diplocraterion (1)
-
Palaeophycus (1)
-
Planolites (1)
-
Rhizocorallium (1)
-
Thalassinoides (1)
-
-
Invertebrata
-
Arthropoda
-
Mandibulata
-
Crustacea
-
Ostracoda (2)
-
-
-
-
Cnidaria
-
Anthozoa (1)
-
-
Mollusca
-
Bivalvia
-
Pterioida
-
Pteriina
-
Inocerami
-
Inoceramidae (1)
-
-
-
-
-
Cephalopoda
-
Ammonoidea
-
Ammonites (1)
-
-
Coleoidea
-
Belemnoidea (1)
-
-
-
-
Protista
-
Foraminifera (2)
-
-
-
microfossils
-
problematic microfossils (1)
-
-
palynomorphs
-
acritarchs (1)
-
Dinoflagellata (4)
-
miospores
-
pollen (2)
-
-
-
Plantae
-
algae
-
nannofossils (1)
-
-
Spermatophyta
-
Gymnospermae
-
Coniferales (1)
-
-
-
-
problematic fossils
-
problematic microfossils (1)
-
-
-
geochronology methods
-
fission-track dating (1)
-
Sr/Sr (1)
-
-
geologic age
-
Cenozoic
-
Quaternary
-
Pleistocene
-
middle Pleistocene (1)
-
upper Pleistocene
-
Devensian
-
upper Devensian (1)
-
-
-
-
-
Tertiary
-
Paleogene (1)
-
-
-
Coal Measures (1)
-
Mesozoic
-
Cretaceous
-
Lower Cretaceous
-
Albian
-
upper Albian (2)
-
-
Aptian (1)
-
Barremian (2)
-
Berriasian (2)
-
Speeton Clay (2)
-
Valanginian (1)
-
-
Upper Cretaceous
-
Campanian (1)
-
Cenomanian
-
lower Cenomanian (1)
-
-
Santonian (1)
-
Senonian (2)
-
-
-
Jurassic
-
Heather Formation (1)
-
Lower Jurassic
-
Dunlin Group (1)
-
Hettangian (2)
-
lower Liassic (2)
-
middle Liassic (2)
-
Pliensbachian (4)
-
Sinemurian (3)
-
Toarcian
-
lower Toarcian (1)
-
-
upper Liassic (1)
-
-
Middle Jurassic
-
Aalenian (2)
-
Bajocian
-
Brent Group (1)
-
Ness Formation (1)
-
Tarbert Formation (1)
-
-
Bathonian
-
Great Oolite Group (1)
-
-
Callovian (3)
-
Dogger (1)
-
-
Oxford Clay (1)
-
Upper Jurassic
-
Kimmeridge Clay (3)
-
Kimmeridgian (1)
-
Oxfordian (2)
-
Portlandian (1)
-
-
-
Kayenta Formation (1)
-
Navajo Sandstone (1)
-
Triassic
-
Lower Triassic
-
Bunter (2)
-
-
Middle Triassic (1)
-
Moenkopi Formation (1)
-
Sherwood Sandstone (1)
-
Upper Triassic
-
Chinle Formation (1)
-
Mercia Mudstone (1)
-
Rhaetian
-
Penarth Group (1)
-
-
-
-
Wingate Sandstone (1)
-
-
Paleozoic
-
Carboniferous
-
Lower Carboniferous
-
Dinantian (1)
-
-
Mississippian
-
Middle Mississippian
-
Visean (1)
-
-
-
Namurian (2)
-
Pennsylvanian (1)
-
Upper Carboniferous
-
Millstone Grit (1)
-
Westphalian (1)
-
-
-
lower Paleozoic (1)
-
middle Paleozoic (1)
-
Permian
-
Lower Permian
-
Leman Sandstone Formation (2)
-
-
Rotliegendes (2)
-
Upper Permian
-
Zechstein (5)
-
-
-
-
-
igneous rocks
-
igneous rocks
-
plutonic rocks
-
granites (4)
-
-
-
volcanic ash (1)
-
-
metamorphic rocks
-
turbidite (1)
-
-
minerals
-
carbonates
-
dawsonite (1)
-
-
silicates
-
sheet silicates
-
clay minerals
-
kaolinite (1)
-
smectite (4)
-
vermiculite (1)
-
-
illite (2)
-
mica group
-
glauconite (1)
-
-
serpentine group
-
berthierine (1)
-
-
-
-
-
Primary terms
-
absolute age (1)
-
academic institutions (1)
-
associations (1)
-
Atlantic Ocean
-
North Atlantic
-
North Sea
-
East Shetland Basin (1)
-
Viking Graben (1)
-
-
-
-
biography (2)
-
bitumens (1)
-
carbon
-
C-13/C-12 (4)
-
-
Cenozoic
-
Quaternary
-
Pleistocene
-
middle Pleistocene (1)
-
upper Pleistocene
-
Devensian
-
upper Devensian (1)
-
-
-
-
-
Tertiary
-
Paleogene (1)
-
-
-
Chordata
-
Vertebrata
-
Tetrapoda
-
Reptilia
-
Diapsida
-
Ichthyosauria (1)
-
Sauropterygia
-
Plesiosauria (1)
-
-
-
-
-
-
-
clay mineralogy (3)
-
continental shelf (2)
-
crust (2)
-
data processing (1)
-
deformation (5)
-
diagenesis (3)
-
economic geology (1)
-
energy sources (1)
-
Europe
-
Central Europe
-
Germany (1)
-
-
North Sea Coast (2)
-
Western Europe
-
France
-
Drome France (1)
-
Paris Basin (1)
-
-
Netherlands (1)
-
Scandinavia
-
Denmark (1)
-
-
United Kingdom
-
Great Britain
-
England
-
Alston Block (1)
-
Cheshire England (1)
-
Derbyshire England (1)
-
Dorset England (1)
-
East Anglia
-
Norfolk England (2)
-
-
East Midlands (4)
-
Gloucestershire England (2)
-
Isle of Wight England (1)
-
Kent England
-
Folkestone England (1)
-
-
Lancashire England (1)
-
Lincolnshire England (4)
-
London Basin (1)
-
Pennines (1)
-
Staffordshire England (1)
-
Wessex Basin (2)
-
Worcestershire England (1)
-
Yorkshire England
-
North Yorkshire England
-
York England (1)
-
-
-
-
Scotland
-
Moray Firth (2)
-
-
Wales (1)
-
-
Northern Ireland (1)
-
-
-
-
faults (11)
-
folds (3)
-
fractures (2)
-
geochemistry (3)
-
geochronology (1)
-
geomorphology (1)
-
geophysical methods (14)
-
glacial geology (1)
-
ground water (2)
-
hydrology (1)
-
ichnofossils
-
Chondrites ichnofossils (1)
-
Diplocraterion (1)
-
Palaeophycus (1)
-
Planolites (1)
-
Rhizocorallium (1)
-
Thalassinoides (1)
-
-
igneous rocks
-
plutonic rocks
-
granites (4)
-
-
-
intrusions (6)
-
Invertebrata
-
Arthropoda
-
Mandibulata
-
Crustacea
-
Ostracoda (2)
-
-
-
-
Cnidaria
-
Anthozoa (1)
-
-
Mollusca
-
Bivalvia
-
Pterioida
-
Pteriina
-
Inocerami
-
Inoceramidae (1)
-
-
-
-
-
Cephalopoda
-
Ammonoidea
-
Ammonites (1)
-
-
Coleoidea
-
Belemnoidea (1)
-
-
-
-
Protista
-
Foraminifera (2)
-
-
-
isostasy (1)
-
isotopes
-
stable isotopes
-
C-13/C-12 (4)
-
O-18/O-16 (2)
-
-
-
maps (2)
-
marine geology (1)
-
Mesozoic
-
Cretaceous
-
Lower Cretaceous
-
Albian
-
upper Albian (2)
-
-
Aptian (1)
-
Barremian (2)
-
Berriasian (2)
-
Speeton Clay (2)
-
Valanginian (1)
-
-
Upper Cretaceous
-
Campanian (1)
-
Cenomanian
-
lower Cenomanian (1)
-
-
Santonian (1)
-
Senonian (2)
-
-
-
Jurassic
-
Heather Formation (1)
-
Lower Jurassic
-
Dunlin Group (1)
-
Hettangian (2)
-
lower Liassic (2)
-
middle Liassic (2)
-
Pliensbachian (4)
-
Sinemurian (3)
-
Toarcian
-
lower Toarcian (1)
-
-
upper Liassic (1)
-
-
Middle Jurassic
-
Aalenian (2)
-
Bajocian
-
Brent Group (1)
-
Ness Formation (1)
-
Tarbert Formation (1)
-
-
Bathonian
-
Great Oolite Group (1)
-
-
Callovian (3)
-
Dogger (1)
-
-
Oxford Clay (1)
-
Upper Jurassic
-
Kimmeridge Clay (3)
-
Kimmeridgian (1)
-
Oxfordian (2)
-
Portlandian (1)
-
-
-
Kayenta Formation (1)
-
Navajo Sandstone (1)
-
Triassic
-
Lower Triassic
-
Bunter (2)
-
-
Middle Triassic (1)
-
Moenkopi Formation (1)
-
Sherwood Sandstone (1)
-
Upper Triassic
-
Chinle Formation (1)
-
Mercia Mudstone (1)
-
Rhaetian
-
Penarth Group (1)
-
-
-
-
Wingate Sandstone (1)
-
-
metals
-
actinides
-
thorium (1)
-
uranium (1)
-
-
alkali metals
-
potassium (1)
-
-
-
metasomatism (1)
-
micropaleontology (1)
-
mineral deposits, genesis (1)
-
Mohorovicic discontinuity (1)
-
ocean circulation (1)
-
oceanography (1)
-
oil and gas fields (5)
-
orogeny (1)
-
oxygen
-
O-18/O-16 (2)
-
-
paleoclimatology (1)
-
paleoecology (6)
-
paleogeography (6)
-
Paleozoic
-
Carboniferous
-
Lower Carboniferous
-
Dinantian (1)
-
-
Mississippian
-
Middle Mississippian
-
Visean (1)
-
-
-
Namurian (2)
-
Pennsylvanian (1)
-
Upper Carboniferous
-
Millstone Grit (1)
-
Westphalian (1)
-
-
-
lower Paleozoic (1)
-
middle Paleozoic (1)
-
Permian
-
Lower Permian
-
Leman Sandstone Formation (2)
-
-
Rotliegendes (2)
-
Upper Permian
-
Zechstein (5)
-
-
-
-
palynomorphs
-
acritarchs (1)
-
Dinoflagellata (4)
-
miospores
-
pollen (2)
-
-
-
petroleum
-
natural gas
-
shale gas (1)
-
-
-
petrology (2)
-
Plantae
-
algae
-
nannofossils (1)
-
-
Spermatophyta
-
Gymnospermae
-
Coniferales (1)
-
-
-
-
problematic fossils
-
problematic microfossils (1)
-
-
remote sensing (2)
-
sea-level changes (7)
-
sedimentary petrology (1)
-
sedimentary rocks
-
carbonate rocks
-
chalk (5)
-
limestone (3)
-
-
chemically precipitated rocks
-
chert (1)
-
evaporites (1)
-
-
clastic rocks
-
claystone (1)
-
marl (1)
-
mudstone (6)
-
red beds (1)
-
sandstone (9)
-
shale (2)
-
siltstone (2)
-
-
coal (3)
-
-
sedimentary structures
-
biogenic structures
-
bioherms (1)
-
bioturbation (2)
-
stromatolites (1)
-
-
planar bedding structures
-
cyclothems (1)
-
hummocky cross-stratification (1)
-
sand bodies (1)
-
-
-
sedimentation (8)
-
sediments
-
clastic sediments
-
alluvium (1)
-
clay (1)
-
loess (1)
-
mud (1)
-
till (3)
-
-
marine sediments (2)
-
peat (1)
-
-
seismology (1)
-
shorelines (1)
-
soils
-
Mollisols (1)
-
-
stratigraphy (6)
-
structural analysis (1)
-
structural geology (2)
-
tectonics
-
salt tectonics (1)
-
-
United States
-
Paradox Basin (1)
-
Texas
-
Tarrant County Texas
-
Fort Worth Texas (1)
-
-
-
Utah (1)
-
-
well-logging (2)
-
-
sedimentary rocks
-
sedimentary rocks
-
carbonate rocks
-
chalk (5)
-
limestone (3)
-
-
chemically precipitated rocks
-
chert (1)
-
evaporites (1)
-
-
clastic rocks
-
claystone (1)
-
marl (1)
-
mudstone (6)
-
red beds (1)
-
sandstone (9)
-
shale (2)
-
siltstone (2)
-
-
coal (3)
-
-
tempestite (2)
-
turbidite (1)
-
volcaniclastics (1)
-
-
sedimentary structures
-
borings (1)
-
burrows (1)
-
sedimentary structures
-
biogenic structures
-
bioherms (1)
-
bioturbation (2)
-
stromatolites (1)
-
-
planar bedding structures
-
cyclothems (1)
-
hummocky cross-stratification (1)
-
sand bodies (1)
-
-
-
-
sediments
-
sediments
-
clastic sediments
-
alluvium (1)
-
clay (1)
-
loess (1)
-
mud (1)
-
till (3)
-
-
marine sediments (2)
-
peat (1)
-
-
tempestite (2)
-
turbidite (1)
-
volcaniclastics (1)
-
-
soils
-
soils
-
Mollisols (1)
-
-
Market Weighton High
The Market Weighton High in the 21st century – new understanding of a long-standing problem
Onlap and regression of Jurassic sequences onto the Market Weighton High fr...
Section showing the extent of erosion of Market Weighton High sediments adj...
Abstract A virtually complete succession of shallow-marine, epicontinental Lower Jurassic strata crops out in excellent exposures along the North Yorkshire coast (U.K.). Borehole control of the inland continuation of these deposits, together with the availability of a detailed ammonite biostratigraphy, allows for the construction of a cross-section correlating the relatively thick succession of the Cleveland Basin (exposed in the coastal sections) with the more condensed succession on the adjacent Market Weighton High (encountered in boreholes). This study is concerned with only the Hettangian to Pliensbachian part of the Liassic succession, corresponding to the informal 'lower Lias' and 'middle Lias' divisions of traditional usage. Detailed examination of sedimentological features within a biostratigraphic framework revealed a systematic set of changes occurring both in the basin and on the high in medium-scale depositional sequences (10 to 60 m thickness; duration of 1 to 3 ammonite biozones). These sequences show an overall shallowing-upward trend from mudstone, deposited below storm wave-base, through quartz siltstone and sandstone or shelly mudstone, deposited above storm wave-base in the shoreface domain, to Fe-enriched deposits (limonite, glauconite, chamosite, ferruginous-ooliths) at the top of the sequence. The mudstones were deposited relatively rapidly and extend over both basin and high. The shelly mudstones, siltstones and sandstones represent much lower overall accumulation rates. The Fe-enriched deposits represent periods of condensation and are best developed on and immediately around the topographic Market Weighton High. Three orders of depositional sequences have been identified: (1) 3 large-scale, 2nd-order sequences, that record major sea-level rises in the planorbis/liasicus zones, semicostatum zone and jamesoni zone and are bounded by major erosional phases in the bucklandi and margaritatus zones and a basin-wide shallowing in the raricostatum zone; (2) 6 medium-scale, 3rd-order sequences that are bounded by phases of reduced, Fe-rich sedimentation or erosional/nondepositional surfaces and that have a duration in the order of one ammonite subzone; and (3) several types of small-scale, high-frequency, 4th and 5th order cycles. The transgressions of the 2nd-order depositional sequences (early Hettangian, early Sinemurian, early Pliensbachian times) are recognized worldwide and are thus most probably of eustatic origin. Tectonic uplift of the Market Weighton High influenced the expression of the medium-scale, 3rd-order sequences. Detailed comparison with other British and European sites is required to further clarify this aspect. Long-term climatic influence was also important in setting the scene for the abundant supply of iron, which became concentrated in the marine environment. At a higher frequency, climate influenced sediment distribution within the shallow epicontinental basin by relatively short-term, orbitally induced variations in the weather conditions.
Sedimentology and stratigraphy of the Kellaways Sand Member (Lower Callovian), Burythorpe, North Yorkshire, UK
Jurassic sedimentation in the Cleveland Basin: a review
Abstract This chapter describes Lower Jurassic second-order sequences J00 and J10, and their component third-order sequences J1–J6 and J12–J18. Two sequences (J1 and J3) are new, four sequences (J2, J4, J12 and J16) are amended and one sequence (J17) is renamed. A significant unconformity at the base of the J12 sequence (Upper Sinemurian) is present near the base of the Dunlin Group in the North Viking Graben–East Shetland Platform and in the Danish Central Graben, and correlates with an equivalent unconformity around the margins of the London Platform, onshore UK. A marked unconformity at the base of the J16 sequence is recognized in the North Viking Graben and onshore UK, where it is related to structural movements on the Market Weighton High, eastern England. Several levels of carbon enrichment (carbon isotope excursions (CIEs)) and associated geochemical changes tie to J sequences defining maximum flooding surfaces: the Upper Sinemurian CIE equates to the base J6 maximum flooding surface (MFS), the basal Pliensbachian CIE ties to the base J13 MFS, the basal Toarcian CIE relates to the base J17 MFS and the Toarcian Ocean Anoxic Event corresponds with the base J18 MFS.