Update search
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
Format
Article Type
Journal
Publisher
Section
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Atlantic Ocean Islands
-
Canary Islands
-
Grand Canary (1)
-
-
Falkland Islands (1)
-
-
Mexico
-
Puebla Mexico (1)
-
-
Pacific Ocean (1)
-
South America
-
Andes
-
Patagonian Andes (1)
-
-
Argentina (1)
-
Chile
-
Aisen del General Carlos Ibanez del Campo Chile
-
Aisen Chile (1)
-
-
-
Falkland Islands (1)
-
Patagonia
-
Patagonian Andes (1)
-
-
Tierra del Fuego (1)
-
-
-
elements, isotopes
-
metals
-
alkali metals
-
potassium (1)
-
-
-
noble gases
-
argon (1)
-
-
-
fossils (1)
-
geochronology methods
-
Ar/Ar (1)
-
K/Ar (2)
-
U/Pb (3)
-
-
geologic age
-
Cenozoic
-
Tertiary
-
Neogene
-
Pliocene (1)
-
-
-
-
Mesozoic
-
Triassic (1)
-
-
Paleozoic
-
Acatlan Complex (3)
-
Carboniferous (1)
-
Ordovician (1)
-
Permian (1)
-
Silurian (1)
-
-
Precambrian
-
upper Precambrian
-
Proterozoic
-
Mesoproterozoic (1)
-
-
-
-
-
igneous rocks
-
igneous rocks
-
plutonic rocks
-
granites (1)
-
-
volcanic rocks (1)
-
-
-
metamorphic rocks
-
metamorphic rocks
-
metasedimentary rocks (1)
-
-
-
minerals
-
silicates
-
orthosilicates
-
nesosilicates
-
zircon group
-
zircon (2)
-
-
-
-
-
-
Primary terms
-
absolute age (5)
-
Atlantic Ocean Islands
-
Canary Islands
-
Grand Canary (1)
-
-
Falkland Islands (1)
-
-
Cenozoic
-
Tertiary
-
Neogene
-
Pliocene (1)
-
-
-
-
crust (1)
-
deformation (1)
-
geochemistry (3)
-
igneous rocks
-
plutonic rocks
-
granites (1)
-
-
volcanic rocks (1)
-
-
intrusions (2)
-
magmas (1)
-
Mesozoic
-
Triassic (1)
-
-
metals
-
alkali metals
-
potassium (1)
-
-
-
metamorphic rocks
-
metasedimentary rocks (1)
-
-
Mexico
-
Puebla Mexico (1)
-
-
noble gases
-
argon (1)
-
-
Pacific Ocean (1)
-
paleogeography (2)
-
Paleozoic
-
Acatlan Complex (3)
-
Carboniferous (1)
-
Ordovician (1)
-
Permian (1)
-
Silurian (1)
-
-
plate tectonics (2)
-
Precambrian
-
upper Precambrian
-
Proterozoic
-
Mesoproterozoic (1)
-
-
-
-
South America
-
Andes
-
Patagonian Andes (1)
-
-
Argentina (1)
-
Chile
-
Aisen del General Carlos Ibanez del Campo Chile
-
Aisen Chile (1)
-
-
-
Falkland Islands (1)
-
Patagonia
-
Patagonian Andes (1)
-
-
Tierra del Fuego (1)
-
-
tectonics (1)
-
GeoRef Categories
Era and Period
Epoch and Age
Date
Availability
Los Hornos Pluton
Ordovician calc-alkaline granitoids in the Acatlán Complex, southern México: Geochemical and geochronologic data and implications for the tectonics of the Gondwanan margin of the Rheic Ocean Available to Purchase
U-Pb zircon data from three undeformed to slightly deformed, megacrystic, granitoid plutons in the northern Acatlán Complex of southern México has indicated that all three are part of a larger suite of late Ordovician plutons. 40 Ar/ 39 Ar data from hornblende and biotite show mainly disturbed spectra, but biotite from the Palo Liso and Los Hornos plutons yields plateaus with ages of 305 ± 26 Ma and 157 ± 12 Ma, respectively. These thermal events may be correlated, respectively, with Permo-Triassic and Jurassic tectonothermal events recorded elsewhere in the Acatlán Complex. All three plutons are peraluminous with calc-alkaline affinities, characteristics that are consistent with inherited zircon ages and together suggest a source in Mesoproterozoic calc-alkaline rocks similar to those exposed in the neighboring Oaxaca terrane. We interpret these granites to be related to the early Ordovician separation of peri-Gondwanan terranes from Gondwana during the opening of the Rheic Ocean. Elsewhere in the Acatlán Complex, Ordovician megacrystic granitoids of the Piaxtla Suite were subjected to high-grade metamorphism, which we infer to be related to subduction along the Gondwanan margin during the Devonian–Carboniferous. The three plutons reported here were not affected by Devono-Carboniferous metamorphism and thus are inferred to have remained outside the subduction zone.
Jurassic to Miocene K–Ar dates from eastern central Patagonian Cordillera plutons, Chile (45°–48° S) Available to Purchase
Geochronology and stratigraphy of the Roque Nublo Cycle, Gran Canaria, Canary Islands Available to Purchase
Permian–Carboniferous arc magmatism and basin evolution along the western margin of Pangea: Geochemical and geochronological evidence from the eastern Acatlán Complex, southern Mexico Available to Purchase
DARWIN THE GEOLOGIST IN SOUTHERN SOUTH AMERICA Available to Purchase
SEG Newsletter 66 (July) Available to Purchase
SEG Newsletter 71 (October) Available to Purchase
Vestige of the Rheic Ocean in North America: The Acatlán Complex of southern México Available to Purchase
The Acatlán Complex of southern México comprises metasedimentary and metaigneous rocks that represent the vestige of a Paleozoic ocean. Juxtaposed against granulite-facies gneisses of Mesoproterozoic (ca. 1 Ga) age, the complex has previously been related to the Iapetus Ocean and interpreted to preserve a tectonostratigraphic record linked to that of the Appalachian orogen: (1) Cambro-Ordovician deposition of a trench or forearc sequence (the Petlalcingo Group: the Magdalena, Chazumba, and Cosoltepec Formations) and an oceanic assemblage (the Piaxtla Group), (2) polyphase Late Ordovician–Early Silurian deformation (the Acatecan orogeny) during which the Piaxtla Group underwent eclogite-facies metamorphism synchronous with megacrystic granitoid emplacement, (3) deposition of the arc-related Tecomate Formation and intrusion of megacrystic granitoid plutons during the Devonian, and (4) deformation under greenschist-facies conditions during the Late Devonian Mixtecan orogeny. However, recent structural, geochronological, and geochemical studies have shown that (1) the Cosoltepec Formation is bracketed between ca. 455 Ma and the latest Devonian and may be part of a continental rise prism with slivers of oceanic basalt; (2) the Magdalena and Chazumba Units represent a clastic wedge assemblage of Permo-Triassic age; (3) the eclogitic metamorphism is locally Mississippian in age; (4) the Tecomate Formation is an arc complex of latest Pennsylvanian–Middle Permian age; (5) the megacrystic granitoid rocks span the Ordovician and have a calc-alkaline geochemistry, whereas accompanying mafic units have mixed continental arc–tholeiitic affinities and are locally as young as the earliest Silurian; (6) the greenschist-facies tectonothermal event occurred in the Permo-Triassic; and (7) the complex records a Jurassic tectonothermal event that resulted in local high-grade metamorphism and migmatization. This revised geological history precludes any linkage to Iapetus, but is consistent with that of the Rheic and paleo-Pacific Oceans and is interpreted to record (1) development of a rift or passive margin on the southern flank of the Rheic Ocean in the Cambro-Ordovician, (2) formation of either an arc or an extensional regime along the formerly active northern margin of Gondwana throughout the Ordovician, (3) ocean closure documented by subduction-related eclogite-facies metamorphism and exhumation during the Late Devonian–Mississippian, (4) Permo-Triassic convergent tectonics on the paleo-Pacific margin of Pangea, and (5) overriding of a Jurassic plume.