- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Caribbean region
-
West Indies
-
Antilles
-
Greater Antilles
-
Cuba (1)
-
-
-
-
-
South America
-
Andes (1)
-
Argentina
-
Buenos Aires Argentina (1)
-
Mendoza Argentina (1)
-
Pampas (1)
-
-
-
-
commodities
-
bitumens
-
asphalt (1)
-
-
petroleum (2)
-
-
fossils
-
Chordata
-
Vertebrata
-
Tetrapoda
-
Mammalia
-
Theria
-
Eutheria
-
Carnivora
-
Fissipeda
-
Felidae
-
Smilodon (1)
-
-
-
-
-
-
-
-
-
-
coprolites (1)
-
ichnofossils (1)
-
-
geologic age
-
Cenozoic
-
Quaternary
-
Pleistocene
-
upper Pleistocene (1)
-
-
-
Tertiary
-
Paleogene
-
Eocene (1)
-
-
-
-
Mesozoic
-
Cretaceous (2)
-
Jurassic (2)
-
-
-
igneous rocks
-
igneous rocks
-
volcanic rocks
-
andesites (1)
-
-
-
-
Primary terms
-
bitumens
-
asphalt (1)
-
-
Caribbean region
-
West Indies
-
Antilles
-
Greater Antilles
-
Cuba (1)
-
-
-
-
-
Cenozoic
-
Quaternary
-
Pleistocene
-
upper Pleistocene (1)
-
-
-
Tertiary
-
Paleogene
-
Eocene (1)
-
-
-
-
Chordata
-
Vertebrata
-
Tetrapoda
-
Mammalia
-
Theria
-
Eutheria
-
Carnivora
-
Fissipeda
-
Felidae
-
Smilodon (1)
-
-
-
-
-
-
-
-
-
-
coprolites (1)
-
economic geology (1)
-
faults (1)
-
folds (1)
-
ichnofossils (1)
-
igneous rocks
-
volcanic rocks
-
andesites (1)
-
-
-
intrusions (1)
-
Mesozoic
-
Cretaceous (2)
-
Jurassic (2)
-
-
petroleum (2)
-
sedimentary rocks
-
clastic rocks
-
shale (1)
-
-
-
South America
-
Andes (1)
-
Argentina
-
Buenos Aires Argentina (1)
-
Mendoza Argentina (1)
-
Pampas (1)
-
-
-
-
sedimentary rocks
-
sedimentary rocks
-
clastic rocks
-
shale (1)
-
-
-
-
sedimentary structures
-
coprolites (1)
-
La Eloisa Member
Map showing the site where the fossil coprolite was found. The location is ...
A POSSIBLE SMILODON (MAMMALIA, FELIDAE) COPROLITE FROM THE PLEISTOCENE OF ARGENTINA
The Petroliferous Belt of Central-Western Mendoza Province, Argentina
The Geology of Cuban Petroleum Deposits
In this section, only the stratigraphy of the rocks deposited before and during the violent events of the Cuban orogeny will be described. The deformation probably reached its peak during the early–middle Eocene. The reason for this rather indefinite time assignment is that no index faunas have been found to separate the middle from the lower Eocene in the syn-orogenic flysch sediments, much less in the wildflysch that characterizes the culmination of the orogeny. The only evidence that the orogeny is pre–upper Eocene is a widespread, well-defined unconformity below an upper Eocene orbitoid-rich limestone that, although occasionally deformed, was not involved in the strong orogenic tectonism. As will be seen later, the tectonic events that marked the end of the orogeny were not exactly synchronous all over Cuba. In the south, the orogenic deformation started in the late Maastrichtian to Paleocene, whereas in the north, the deformation started in the early Eocene. The molasse (or erosion of already inactive topography) cycle startedinthe southinthe early Eocene while thrusting proceeded in the north in the middle Eocene with the production of associated flysch deposits (or erosion of an active orogenic front). The mo-lasse was carried piggyback by the northward advancing thrusts while contemporaneous flysch was being generated in the north. Stratigraphy and structure are intimately intertwined in Cuba; the significance of structural features can be understood only through the knowledge of stratigraphy. Therefore, in this chapter, the stratigraphy will be described first to establish a plausible preorogenic paleogeography.As previously mentioned, many