Update search
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
Format
Article Type
Journal
Publisher
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Atlantic Ocean
-
North Atlantic
-
Gulf of Mexico (1)
-
-
-
Chicxulub Crater (1)
-
Europe
-
Western Europe
-
Scandinavia
-
Denmark
-
Stevns Klint (1)
-
-
-
-
-
International Ocean Discovery Program (1)
-
Yucatan Peninsula (1)
-
-
elements, isotopes
-
carbon
-
C-13/C-12 (1)
-
-
isotope ratios (2)
-
isotopes
-
stable isotopes
-
C-13/C-12 (1)
-
O-18/O-16 (1)
-
S-34/S-32 (1)
-
-
-
oxygen
-
O-18/O-16 (1)
-
-
sulfur
-
S-34/S-32 (1)
-
-
-
fossils
-
Invertebrata
-
Protista
-
Foraminifera (2)
-
-
-
microfossils (3)
-
-
geologic age
-
Cenozoic
-
Tertiary
-
Paleogene
-
Paleocene
-
lower Paleocene
-
K-T boundary (1)
-
-
-
-
-
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous
-
K-T boundary (1)
-
Maestrichtian (1)
-
Senonian (1)
-
-
-
-
-
minerals
-
sulfides
-
pyrite (1)
-
-
-
Primary terms
-
Atlantic Ocean
-
North Atlantic
-
Gulf of Mexico (1)
-
-
-
bibliography (1)
-
carbon
-
C-13/C-12 (1)
-
-
Cenozoic
-
Tertiary
-
Paleogene
-
Paleocene
-
lower Paleocene
-
K-T boundary (1)
-
-
-
-
-
-
Europe
-
Western Europe
-
Scandinavia
-
Denmark
-
Stevns Klint (1)
-
-
-
-
-
geochemistry (1)
-
Invertebrata
-
Protista
-
Foraminifera (2)
-
-
-
isotopes
-
stable isotopes
-
C-13/C-12 (1)
-
O-18/O-16 (1)
-
S-34/S-32 (1)
-
-
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous
-
K-T boundary (1)
-
Maestrichtian (1)
-
Senonian (1)
-
-
-
-
oxygen
-
O-18/O-16 (1)
-
-
paleoecology (1)
-
sedimentary rocks (1)
-
sedimentation (1)
-
sulfur
-
S-34/S-32 (1)
-
-
-
sedimentary rocks
-
sedimentary rocks (1)
-
GeoRef Categories
Era and Period
Epoch and Age
Book Series
Date
Availability
Kulstirenden Denmark
Reappraisal of the K–T boundary succession at Stevns Klint, Denmark Available to Purchase
RECENT LITERATURE ON FORAMINIFERA Available to Purchase
Microbial life in the nascent Chicxulub crater Open Access
The Distribution of Benthic Foraminifera Across the Cretaceous–Paleogene Boundary in Texas (Brazos River) and Denmark (Stevns Klint) Available to Purchase
Abstract The benthic foraminifera have been studied from a large number of samples collected from successions both in, and close to, the Brazos River (Falls County, Texas, U.S.A.) and from the cliffs of Stevns Klint (south of Copenhagen, Denmark). The sections from the Brazos River contain extensive and nearly continuous outcrops, recording the so-called “event” deposits and the Cretaceous–Paleogene boundary. Micropaleontological analysis of samples taken from the Mullinax-1 core, and some of the exposures in the Brazos River (and tributaries), have been investigated for benthic and planktic foraminifera, all of which are indicative of relatively shallow shelf conditions. The benthic foraminifera suffer a significant loss of diversity at the level of the “event” deposits, which appear to predate the micropaleontological Cretaceous–Paleogene boundary, but no mass extinction is recorded. The agglutinated taxa almost disappear at this level, and the faunal changes indicate that there may have been a shallowing at that time. The benthic foraminifera from Stevns Klint are very different from those recorded in Texas, being typical of assemblages in the chalk facies of northwestern Europe. At the base of the Højerup Member (previously known as the Grey Chalk) there are significant changes in the benthic assemblage, again suggestive of a shallowing event at the level of two closely spaced hardgrounds, which often merge into a single horizon. The “event” deposits of the Brazos River successions may, therefore, be related to events associated with the hardground horizon at Stevns Klint, and the evidence for this interpretation is presented. This, and other, correlations provide data for the construction of a sequence stratigraphy for the Cretaceous–Paleogene boundary interval.
Spatial Variability of Porosity in Chalk: Comparison of an Outcrop and a North Sea Reservoir Available to Purchase
Abstract The study of the variability of porosity and permeability, and of the spatial distribution of petrophysical parameters, has received increasing interest for chalk deposits, which form important reservoirs for both hydrocarbons and groundwater. A common activity is to construct numerical reservoir models for different types of flow simulation. These models must be based on a diversity of data, including outcrop information when subsurface information is sparse. This chapter presents a comparison of the spatial variability of outcrop and reservoir petrophysical properties in chalk and a discussion on the use of information from horizontal wells.