Update search
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
Format
Publisher
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Asia
-
Far East
-
Mongolia (1)
-
-
-
Canada
-
Western Canada
-
British Columbia (1)
-
-
-
Europe
-
Balkan Peninsula (1)
-
Southern Europe
-
Serbia (2)
-
-
-
South America
-
Chile (1)
-
-
United States
-
Nevada
-
Lyon County Nevada
-
Yerington Nevada (1)
-
-
-
-
-
commodities
-
metal ores
-
copper ores (2)
-
gold ores (2)
-
lead ores (1)
-
lead-zinc deposits (1)
-
molybdenum ores (1)
-
polymetallic ores (1)
-
zinc ores (1)
-
-
mineral deposits, genesis (2)
-
-
geochronology methods
-
U/Pb (1)
-
-
geologic age
-
Cenozoic
-
Tertiary
-
Neogene
-
Miocene (1)
-
-
-
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous (1)
-
-
Jurassic (1)
-
-
-
igneous rocks
-
igneous rocks
-
plutonic rocks
-
diorites (1)
-
-
-
-
minerals
-
silicates
-
chain silicates
-
amphibole group
-
clinoamphibole
-
hornblende (1)
-
-
-
-
sheet silicates
-
mica group
-
biotite (1)
-
-
-
-
-
Primary terms
-
absolute age (1)
-
Asia
-
Far East
-
Mongolia (1)
-
-
-
Canada
-
Western Canada
-
British Columbia (1)
-
-
-
Cenozoic
-
Tertiary
-
Neogene
-
Miocene (1)
-
-
-
-
Europe
-
Balkan Peninsula (1)
-
Southern Europe
-
Serbia (2)
-
-
-
igneous rocks
-
plutonic rocks
-
diorites (1)
-
-
-
magmas (1)
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous (1)
-
-
Jurassic (1)
-
-
metal ores
-
copper ores (2)
-
gold ores (2)
-
lead ores (1)
-
lead-zinc deposits (1)
-
molybdenum ores (1)
-
polymetallic ores (1)
-
zinc ores (1)
-
-
metasomatism (2)
-
mineral deposits, genesis (2)
-
orogeny (1)
-
sedimentary rocks (1)
-
South America
-
Chile (1)
-
-
tectonics (2)
-
United States
-
Nevada
-
Lyon County Nevada
-
Yerington Nevada (1)
-
-
-
-
-
sedimentary rocks
-
sedimentary rocks (1)
-
GeoRef Categories
Era and Period
Epoch and Age
Book Series
Date
Availability
Kraku Ridji Prospect
Geologic Setting and Tectonic Evolution of Porphyry Cu-Au, Polymetallic Replacement, and Sedimentary Rock-Hosted Au Deposits in the Northwestern Area of the Timok Magmatic Complex, Serbia Available to Purchase
Abstract A northerly trending zone of porphyry Cu-Au, porphyry Au, polymetallic replacement Pb-Zn-Au-Ag, and sedimentary rock-hosted Au deposits along the northwest margin of the Late Cretaceous Timok Magmatic Complex forms a part of the Bor metallogenic zone in eastern Serbia. The porphyry Cu-Au, epithermal quartz-alunite, and polymetallic replacement deposits in the northwest margin of the Complex represent parts of zoned magmatic-hydrothermal systems that are linked to Late Cretaceous oxidized, hornblende-biotite diorite porphyry intruded over a ~5- to 6-m.y. period between 83.6 ± 0.5 and 78.5 ± 1.3 Ma (U-Pb SHRIMP-RG ages on zircon), making them slightly younger than the larger Late Cretaceous (89-83 Ma) porphyry Cu-Au and high-sulfidation Cu-Au deposits in the eastern part of the Complex. The low-temperature sedimentary rock-hosted Au deposits in the northwest lie spatially near to, but are always separated by faults from, the polymetallic replacement and porphyry Cu-Au deposits. However, the common but not ubiquitous spatial association between the sedimentary rock-hosted Au deposits and the zoned porphyry Cu polymetallic replacement deposits, coupled with available exploration geochemical vectors evident in soil geochemistry, does suggest a genetic linkage between all the hydrothermal deposits. An important component required to fit the deposit types into a zoned magmatic hydrothermal model is a revised geologic and tectonic understanding that can also be extended to the entire Timok Magmatic Complex. A component of the revised model emphasizes the role of the Cenozoic faults formed during oroclinal bending of the region. Two fault generations are significant. Postmineral easterly trending normal faults bounding basins filled largely by early Miocene sedimentary rocks preserved the low-temperature sedimentary rock-hosted Au deposits and helped preserve deposits in the eastern area of the Complex. These faults accommodated elongation of the Complex and are kinematically linked to dextral strike-slip faults, such as the Timok-Cerna fault system, with as much as 100 km of displacement. Major, postmineral, NW-trending faults dismembered deposits in the northwest and accommodated sinistral displacement, which on a larger scale facilitated rotation between large crustal blocks, as well as Timok Magmatic Complex-scale shortening normal to the Complex during oroclinal bending of the region. The end result of the postmineral deformation during oroclinal bending and extensional and strike-slip deformation is preservation of different crustal levels, not just in the northwest but also throughout the region. The deformation furthermore enhanced the preservation of Cretaceous ore deposits beneath younger rocks. Because the Complex was constructed over a highly faulted Variscan and older basement terrane, it is possible that reactivation of the pre-Cretaceous basement faults in the basement beneath the Complex, such as the Variscan Blagojev-Kamen-Rudaria fault systems, played a role in the Late Cretaceous history of the Bor metallogenic zone, as well as controlling post-Cretaceous deformation in the Complex.
Chapter 5: Creation of Permeability in the Porphyry Cu Environment Available to Purchase
Abstract Porphyry Cu deposits, the major source of many metals currently utilized by modern civilization, form via the interplay between magmatism, tectonism, and hydrothermal circulation at depths ranging from about 2 to as much as 10 km. These crustal-scale features require the deep crustal formation of a hydrous and oxidized magma, magma ascent along extant permeability fabrics to create an upper crustal convecting magma chamber, volatile saturation of the magma chamber, and finally the episodic escape of an ore-forming hydrothermal fluid and a phenocryst-rich magma into the shallow crustal environment. Three general fluid regimes are involved in the formation of porphyry Cu deposits. These include the deep magma ± volatile zone at lithostatic pressure, an overlying zone of transiently ascending magmatic-hydrothermal fluids that breaches ductile rock at temperatures ~700° to 400°C, and an upper brittle zone at temperatures <400°C characterized by hydrostatically pressured nonmagmatic and magmatic fluids. Critical structural steps include the formation of the magma chamber, magmatic vapor exsolution and collection of a hydrothermal fluid in cupola(s), and episodic hydrofracturing of the chamber roof in order to create the permeability that allows a hydrothermal fluid to rise along with a phenocryst-bearing magma. The interplay between stress produced by far-field tectonics and stress produced by buoyant magma and magmatic hydrothermal fluid creates the fracture permeability that extends from the cupola through an overlying ductile zone where temperatures exceed ~400°C into an overlying brittle zone where temperatures are less than ~400°C. As a consequence, during each fluid escape and magma intrusion event, the rising hydrothermal fluid ascends, depressurizes, cools, reacts with wall rocks, and precipitates quartz plus sulfide minerals, which seal the permeability fabric. A consistent vein geometry present in porphyry Cu deposits worldwide is formed by steeply dipping veins that have mutually crosscutting orientations. Two general orientations are common. The principal vein orientation generally consists of closely spaced sheeted veins with orientations reflecting the far-field stress. Subsidiary veins may be orthogonal to the main vein orientation as radial or concentric veins that reflect magma expansion and extensional strain in the wall rocks as they are stretched by ascent of the buoyant magma and fluids. Episodic magmatic-hydrothermal fluid-driven hydrofracturing creates permeability that is commonly destroyed, as well as locally enhanced, by vein and wall-rock mineral precipitation or dissolution and by wall-rock hydrothermal alteration, depending upon fluid and host-rock compositions. The pulsing character of porphyry Cu magmatic-hydrothermal systems, in part produced by permeability creation and destruction, creates polyphase overprinted intrusive complexes, associated vein networks, and alteration mineralogy that reflects temporal temperature fluctuations beginning at magma temperatures but continuing to low temperatures. Temperature oscillations locally allow external nonmagmatic fluids to access principally the marginal areas but also in some cases the center of the porphyry Cu ore zone at ~<400°C between porphyry dike emplacement events. Over time, the upper part of the source magma chamber at depth cools and crystallizes downward and is accompanied by diminishing magmatic fluid input upward, leading to cooling and isothermal collapse of the porphyry system. Cooling permits the access of external circulating groundwater into the waning magmatic-hydrothermal plume. Magmatic-hydrothermal fluids dominate at temperatures >400°C at pressures transient between lithostatic and superhydrostatic. The external, nonmagmatic saline formation waters or meteoric waters dominate the surrounding and overlying brittle crust at temperatures <400°C at hydrostatic pressures, except where they may mix with buoyantly rising magmatic-derived fluids. Exhumation requires substantial topographic relief, precipitation, and time (typically >1 m.y.) and may enhance overprinted relationships and telescope low-temperature on high-temperature hydrothermal alteration assemblages. Synmineral propagation of faults into or out of a porphyry Cu hydrothermal system in the brittle regime at <400°C can provide an escape channel through which a metalliferous fluid may depart, potentially to form lateral quartz-pyrite veins, overprinted polymetallic Cordilleran lode veins, or an epithermal precious metal-bearing deposit at shallow crustal depths.