- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Atlantic Ocean
-
North Atlantic
-
Gulf of Mexico (1)
-
-
-
Illinois River (1)
-
North America
-
Great Lakes (1)
-
-
United States
-
Illinois (2)
-
Indiana (2)
-
Midwest (1)
-
Mississippi Valley (1)
-
New York
-
Cattaraugus County New York (1)
-
Livingston County New York (1)
-
-
Wabash Valley (1)
-
-
-
elements, isotopes
-
carbon
-
C-14 (2)
-
-
isotope ratios (1)
-
isotopes
-
radioactive isotopes
-
C-14 (2)
-
-
stable isotopes
-
O-18/O-16 (1)
-
-
-
oxygen
-
O-18/O-16 (1)
-
-
-
fossils
-
Chordata
-
Vertebrata
-
Tetrapoda
-
Mammalia (1)
-
-
-
-
microfossils (1)
-
Plantae
-
algae
-
Chlorophyta
-
Tasmanites (1)
-
-
-
-
-
geochronology methods
-
optically stimulated luminescence (1)
-
paleomagnetism (1)
-
-
geologic age
-
Cenozoic
-
Quaternary
-
Pleistocene
-
Lake Agassiz (1)
-
Lake Chicago (1)
-
Peoria Loess (1)
-
Roxana Silt (1)
-
upper Pleistocene
-
Lake Iroquois (1)
-
Weichselian
-
upper Weichselian
-
Allerod (1)
-
Bolling (1)
-
Younger Dryas (1)
-
-
-
Wisconsinan
-
upper Wisconsinan (1)
-
-
-
-
-
-
Laurentide ice sheet (4)
-
Paleozoic
-
Devonian
-
Upper Devonian (1)
-
-
Silurian (1)
-
-
-
Primary terms
-
absolute age (2)
-
Atlantic Ocean
-
North Atlantic
-
Gulf of Mexico (1)
-
-
-
carbon
-
C-14 (2)
-
-
Cenozoic
-
Quaternary
-
Pleistocene
-
Lake Agassiz (1)
-
Lake Chicago (1)
-
Peoria Loess (1)
-
Roxana Silt (1)
-
upper Pleistocene
-
Lake Iroquois (1)
-
Weichselian
-
upper Weichselian
-
Allerod (1)
-
Bolling (1)
-
Younger Dryas (1)
-
-
-
Wisconsinan
-
upper Wisconsinan (1)
-
-
-
-
-
-
Chordata
-
Vertebrata
-
Tetrapoda
-
Mammalia (1)
-
-
-
-
clay mineralogy (1)
-
data processing (1)
-
diagenesis (1)
-
geochronology (1)
-
geomorphology (1)
-
glacial geology (2)
-
hydrogeology (1)
-
isotopes
-
radioactive isotopes
-
C-14 (2)
-
-
stable isotopes
-
O-18/O-16 (1)
-
-
-
North America
-
Great Lakes (1)
-
-
oxygen
-
O-18/O-16 (1)
-
-
paleomagnetism (1)
-
Paleozoic
-
Devonian
-
Upper Devonian (1)
-
-
Silurian (1)
-
-
Plantae
-
algae
-
Chlorophyta
-
Tasmanites (1)
-
-
-
-
reefs (1)
-
sedimentary rocks
-
clastic rocks
-
black shale (1)
-
-
-
sedimentation (1)
-
sediments
-
clastic sediments
-
loess (1)
-
till (3)
-
-
-
United States
-
Illinois (2)
-
Indiana (2)
-
Midwest (1)
-
Mississippi Valley (1)
-
New York
-
Cattaraugus County New York (1)
-
Livingston County New York (1)
-
-
Wabash Valley (1)
-
-
-
sedimentary rocks
-
sedimentary rocks
-
clastic rocks
-
black shale (1)
-
-
-
-
sediments
-
sediments
-
clastic sediments
-
loess (1)
-
till (3)
-
-
-
Glacial Kankakee torrent in northeastern Illinois
Glacial Kankakee Torrent in Northeastern Illinois
Deglacial Kankakee Torrent, source to sink
ABSTRACT The last-glacial megaflood Kankakee Torrent streamlined hills and the remarkably straight backslope of the Kalamazoo moraine (Lake Michigan lobe of the Laurentide ice sheet) in southwestern Michigan. Flooding ensued as proglacial Lake Dowagiac overflowed across remnants of the Lake Michigan lobe at the position of the inner margin of the Kalamazoo moraine as glacial debris and ablating ice were pinned against Portage Prairie. Proglacial Lake Dowagiac developed in the Dowagiac River valley as the lobe retreated to form the Valparaiso moraine. A minimum age of the Kankakee Torrent (18.7 ± 0.6 k.y. B.P) is indicated by the weighted mean value of six optically stimulated luminescence ages determined from quartz sand in glaciofluvial sediment on the Kalamazoo moraine (Lake Michigan and Saginaw lobes). This value is consistent with tighter age control based on radiocarbon ages of tundra plants within silty sediment forming ice-walled lake plains and in a torrent-scoured lake basin (Oswego channel) in Illinois. Crosscutting relationships of well-dated moraines indicate the Kankakee Torrent occurred sometime between 19.7 and 18.9 calibrated (cal.) k.y. B.P. as it skirted the south margin of the Valparaiso Morainic System.
Highstands and overflow history of glacial Lake Chicago and downstream impacts on Gulf of Mexico δ 18 O values
Glacial and nonglacial sediment contributions to Wisconsin Episode loess in the central United States
From source to sink: Glacially eroded, Late Devonian algal “cysts” ( Tasmanites ) delivered to the Gulf of Mexico during the Last Glacial Maximum
Evidence for a late glacial advance near the beginning of the Younger Dryas in western New York State: An event postdating the record for local Laurentide ice sheet recession
Revised time-distance diagram for the Lake Michigan Lobe, Michigan Subepisode, Wisconsin Episode, Illinois, USA
ABSTRACT Based on the interpretation of 893 finite radiocarbon ages, we have revised the time-distance diagram for the Lake Michigan Lobe of the Laurentide ice sheet in Illinois. The data set contains 507 reliable ages determined using standard benzene synthesis–liquid scintillation, including “legacy” ages determined in the 1950s and 1960s at the inception of the radiometric radiocarbon dating method. In addition, the data set includes 278 radiocarbon ages determined by accelerator mass spectrometry. We analyzed the data set based on context, precision, and accuracy to vet minimum or maximum age estimates of diachronic phases. The last glaciation in Illinois is marked by a local maximum margin in northeastern Illinois during the Marengo Phase (modal probability 28,000 cal [calibrated] yr B.P.), and subsequent glacial maximum culminating during the Shelby Phase (24,200 cal yr B.P.). From about that point, the Lake Michigan Lobe entered an overall retreat mode, with significant advances at ~22,200 and 21,100 cal yr B.P. (the Marseilles and Minooka Subphases of the Livingston Phase) and at 20,500 cal yr B.P. (Woodstock Phase). The latter age is also the conservative estimate of the onset of the lacustrine Milwaukee Phase, with referent deposits located as far north as Milwaukee, Wisconsin. This phase ended as the Lake Michigan Lobe made its final advance into Illinois during the Crown Point Phase (18,490 to ca. 16,500 cal yr B.P.), interfingering with the proglacial lacustrine Glenwood Phase deposits (16,900–15,000 cal yr B.P.).
ABSTRACT About 17,000 yr ago, Glacial Lake Maumee breached the Fort Wayne Moraine, sending an unimaginably large torrent of meltwater down the upper Wabash River Valley (UWRV). The Maumee Megaflood (MM) may have lasted only a few weeks, but it scoured out a deep trough along the main stem of the river, radically lowering regional base level in what amounts to a geological instant and imposing a strong disequilibrium on a landscape that continues to experience major geomorphic, environmental, and ecological adjustments. In Huntington and Wabash Counties, the central part of the trough is engorged in resistant, Late Silurian reef-associated and inter-reef rocks, producing the largest natural bedrock exposure in heavily glaciated northern Indiana. Unlike the immature, deranged drainage pattern that characterizes most of the glaciated region, streams adjacent to the UWRV form well-integrated drainage networks that exhibit features and processes more typical of high-relief bedrock areas, such as steep fall zones with prominent, lithologically controlled knickpoints, canyons, large terraces, falls and cascades, and a variety of bluff and hillside morphologies and associated groundwater phenomena. The exceptional exposures and diverse landscape of this region have attracted well over a century of interest from geomorphologists and glacial geologists, sedimentologists, stratigraphers, and paleontologists, as well as hydrogeologists, anthropologists, ecologists, and geoscience educators. Among other firsts, the organic origin of fossil reefs in the southern Great Lakes was definitively established in the UWRV, as was the occurrence of convulsive meltwater outbursts during deglaciation of the Laurentide Ice Sheet; likewise, the first direct Mississippi River–Great Lakes connection was also established here by early voyageurs. Today, the region is a popular destination for both nature tourism and history buffs, due in no small part to the burgeoning number of geologically inspired natural areas and historical sites. This field trip traces the MM from its outlet at Fort Wayne, through the bedrock gorge of the upper Wabash River, to the confluence with the late Tertiary Teays Bedrock Valley, with major emphasis on how the depositional framework and diagenetic history of the Late Silurian reef archipelago continue to reverberate in the modern geomorphic response of the valley to Pleistocene events. The first three stops focus on the Wabash-Erie Channel, which acted as the principal outlet of Glacial Lake Maumee and whose underlying geologic characteristics controlled the overall incision history of the MM. Several stops in the Wabash bedrock gorge and Salamonie Narrows will examine the handiwork of this flood, which created the spectacular klintar, or pinnacle-like reefs, of the UWRV, within a landscape that early geomorphologists likened to the scablands of eastern Washington. There, we will see world-class exposures of the fossilized Late Silurian reefs and how their organic framework and diagenesis are controlling the ongoing adjustment of the UWRV landscape and its streams to the convulsive changes imposed by the MM. Stop 9 will showcase the elusive Teays Bedrock Valley and its complex pre-Wisconsin fill, where it converges with the modern river and has been partially exhumed by a major tributary, and offers a study in contrasts between the bedrock-controlled landscapes of earlier stops and an equally steep one excavated entirely into unconsolidated deposits. After a brief stop at the iconic Seven Pillars landmark, the trip concludes at the spectacular Pipe Creek Jr. Quarry, which features several km of tall exposures through the Late Silurian carbonate complex, a late Neogene sinkhole deposit, and the overlying Pleistocene section.