- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Atlantic Ocean
-
North Atlantic
-
North Sea (1)
-
-
-
-
commodities
-
petroleum (1)
-
-
geologic age
-
Mesozoic
-
Jurassic
-
Middle Jurassic
-
Bajocian
-
Brent Group (1)
-
-
-
-
-
-
Primary terms
-
Atlantic Ocean
-
North Atlantic
-
North Sea (1)
-
-
-
deformation (2)
-
faults (1)
-
fractures (1)
-
Mesozoic
-
Jurassic
-
Middle Jurassic
-
Bajocian
-
Brent Group (1)
-
-
-
-
-
petroleum (1)
-
sedimentary rocks
-
carbonate rocks (1)
-
clastic rocks
-
sandstone (2)
-
-
-
sediments
-
clastic sediments
-
sand (1)
-
-
-
stratigraphy (1)
-
structural analysis (2)
-
tectonics (1)
-
-
sedimentary rocks
-
sedimentary rocks
-
carbonate rocks (1)
-
clastic rocks
-
sandstone (2)
-
-
-
-
sediments
-
sediments
-
clastic sediments
-
sand (1)
-
-
-
Fulla Structure
Deformation in a North Sea Jurassic trap analysed using a triaxial plane strain experiment
Abstract A classical Upper Jurassic fault block in the North Sea, the Fulla Structure, has Brent Group sandstones with good reservoir quality and apparently insignificant fault-related reservoir damage. Core data show high-porous sandstones that extend close to the main faults and there is no evidence of catalase, only of soft-sedimentary deformation. Shear bands are relatively thin with high offsets, and have a texture comparable to the wall rock. To investigate the deformation mechanism and products synthetic Brent Group sands are deformed in a triaxial plane strain box with pre-defined effective consolidation in the range of 100–8000 kPa, simulating a burial depth in the range of 10–800 m. This range covers the burial depth at the time of active faulting for most Jurassic traps in the North Sea, including the Fulla Structure. The experiments demonstrate that grain rolling and grain-boundary sliding are the dominant deformation mechanisms at all the simulated burial depths, and this deformation has no impact on the reservoir quality. The experiments concur with observations from the investigated wells and strengthen an interpretation of limited reservoir damage associated with the Late Jurassic fault activity.
Subseismic-scale reservoir deformation: introduction
Abstract This volume examines the current best practice and new challenges in reservoir characterization and modelling of small- to subseismic-scale deformation features through case studies, experimental results and modelling. The papers in this volume include contributions on four themes related to the small-scale deformation of hydrocarbon reservoirs: the characterization of deformation in porous sandstones; novel characterization techniques; quantifying and characterizing deformation in carbonates; and modelling small-scale features. It includes eight papers from the conference Small to Subseismic-Scale Reservoir Deformation, organized by the Petroleum Group of the Geological Society and held in London from 29 to 30 October 2014, plus two additional papers. The observations in this introduction reflect the authors’ experiences and opinions, presentations at the conference and the papers within this volume.
The tectonic evolution of the Norwegian Sea Continental Margin with emphasis on the Vøring and Møre Basins
Abstract The Norwegian Sea continental margin is dominated by two major basins with a very thick Cretaceous basin fill: the Vøring and Møre Basins. The basins are flanked by the uplifted mainland and the Cretaceous Trøndelag Platform to the east and by the Møre and Vøring Marginal Highs capped by Eocene lavas to the west. The tectonic development of the area is controlled by two structural trends: NE-SW and NW-SE. The area has been tectonically active from Carboniferous to Late Pliocene time with the main tectonic phases in Late Palaeozoic, late Mid-Jurassic-Early Cretaceous and Late Cretaceous-Early Tertiary time. The general tectonic development comprised a long period of extension and rifting that ended in Early Eocene time by continental separation, major volcanism and subsequent sea-floor spreading in the Norwegian-Greenland Sea. In Carboniferous to Early Cretaceous time the extensional tectonics were related to within-plate continental rifting. The tectonics of the Late Cretaceous and the Tertiary periods were controlled by the relative movements along plate boundaries. The overall NE-SW structural grain is constituted by faults and basin axes that probably originated in Late Palaeozoic time and were active during all subsequent tectonic phases. The transverse NW-SE trend is expressed as major lineaments that probably reflect the old, Precambrian grain of the basement. These lineaments, two of which are the continuation into the continental crust of major oceanic fracture zones, controlled the tectonic activity throughout Cretaceous and Tertiary time and constitute the boundaries between the major structural provinces of the area. The differentiation into the Cretaceous basins and the bounding platforms and marginal highs started by the late Mid-Jurassic-Early Cretaceous extensional phase. The subsequent Cretaceous subsidence history, where the basin flanks formed by flexuring rather than faulting, resulted in an exceptionally thick basin fill. In the Vøring Basin the Cretaceous development comprised an early thermal subsidence phase and a post-Cenomanian phase of tectonically driven subsidence involving intermittent phases of normal faulting and compression and folding. The Vøring Basin was tectonically active also during Tertiary time with the main phases of strike-slip-compression coinciding with the Alpine orogenies in Late Eocene and Mid-Miocene time. Within the Vøring Basin there is evidence of the formation of a fossil opal A-opal-CT transition and extensive regional marine erosion in Mid-Miocene and Late Pliocene times. In contrast, the Møre Basin was generally tectonically quiet throughout the Cretaceous and Tertiary periods, experiencing mainly continuous subsidence.