1-20 OF 75 RESULTS FOR

Ferruginea

Results shown limited to content with bounding coordinates.
Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
249–252 Topobea ferruginea (Melastomataceae)
 253–254 Terminalia quintalata (Combretaceae)
 255–258 Maguireothamnus speciosus (Rubiaceae)
 259–262 Symphonia globulifera (Guttiferae)
 263–266 Sagittaria sp. (Alismataceae)
Published: 01 January 2003
PLATE 8 249–252 Topobea ferruginea (Melastomataceae)
 253–254 Terminalia quintalata (Combretaceae)
 255–258 Maguireothamnus speciosus (Rubiaceae)
 259–262 Symphonia globulifera (Guttiferae)
 263–266 Sagittaria sp. (Alismataceae)
Journal Article
Journal: Geology
Published: 01 December 2010
Geology (2010) 38 (12): 1087–1090.
... by the lithoautotrophic microorganisms Gallionella ferruginea and Leptohtrix ochracea . These species have been inferred to play a causal role in the formation of bacteriogenic iron oxides, providing a pathway for the reduction of CO 2 and the depletion of 13 C in the organic constituents of bacteriogenic iron oxides...
FIGURES
Image
Published: 01 December 2010
TABLE 1 CARBON ISOTOPE DATA FROM BACTERIOGENIC IRON OXIDE SAMPLES AT AXIAL VOLCANO, ÄSPÖ HARD ROCK LABORATORY, CHALK RIVER, and DEEP RIVER, AND CULTURES OF GALLIONELLA FERRUGINEA
Image
Back-scattered electron micrograph, with accelerating voltage of 3.0 kV and a working distance of 9.4 mm, of a Gallionella ferruginea stalk which is encrusted in ferrihydrite and goethite. This specimen was taken from the upper oxidized layer of the core.
Published: 01 December 2006
F ig . 6. Back-scattered electron micrograph, with accelerating voltage of 3.0 kV and a working distance of 9.4 mm, of a Gallionella ferruginea stalk which is encrusted in ferrihydrite and goethite. This specimen was taken from the upper oxidized layer of the core.
Image
211–212 Pagamea sp. (Rubiaceae)
 213–217 Byttneria scabra (Sterculiaceae)
 218–222 Spathelia chimantensis (Rutaceae)
 223–228 Acopanea ahogadoi (Theaceae)
 229–234 Microlicia benthamiana (Melastomataceae)
 235–238 Comolia coriacea (Melastomataceae)*
 239–242 Topobea ferruginea (Melastomataceae)
 243–248 Terminalia sp. (Combretaceae)
Published: 01 January 2003
ferruginea (Melastomataceae)
 243–248 Terminalia sp. (Combretaceae)
Image
Bonnetia tepuiensis (211), Ternstroemia crassifolia (212). VOCHYSIACEAE: Qualea paraensis (213), Ruizterania ferruginea (214), R. rigida (215), Vochysia costata (216), V. crassifolia (217). WINTERACEAE: Drymis roraimensis (218). ALISMATACEAE: Sagittaria rhombifolia (219). ARECACEAE: Mauritia flexuosa (220). BROMELIACEAE: Bilbergia macrolepis (221), Brocchinia acuminata (222), B. micrantha (223), Catopsis berteroniana (224).
Published: 01 December 2011
Plate 13 Bonnetia tepuiensis (211), Ternstroemia crassifolia (212). VOCHYSIACEAE: Qualea paraensis (213), Ruizterania ferruginea (214), R. rigida (215), Vochysia costata (216), V. crassifolia (217). WINTERACEAE: Drymis roraimensis (218). ALISMATACEAE: Sagittaria rhombifolia (219
Image
Angiosperms. Brassicaceae: Mathewsia peruviana (Gv: 1–5); Mostacillastrum gracile (Pv: 6–8; Ev: 9–10). Bromeliaceae: Puya ferruginea (Ev: 11–15); Tillandsia latifolia (Ev: 16–20); Cactaceae: Armatocereus matucanensis (Pv: 21–22; Dt: 23; Ev: 24–25); Borzicactus fieldianus (Pv: 26–27; Ev: 28–29; Dt: 30); Carryocactus brachypetalus (Pv: 31–32; Ev: 33–35); Cumulopuntia sphaerica (Gv: 36–39; Dt: 40). Ev = equatorial view; Pv = polar view; Gv = general view; Dt = detail. Photographs were taken at 100× magnification, with the exception of 21–22, 24, 26–29, 36–39 (at 40× magnification).
Published: 27 December 2024
Plate 8. Angiosperms. Brassicaceae: Mathewsia peruviana (Gv: 1–5); Mostacillastrum gracile (Pv: 6–8; Ev: 9–10). Bromeliaceae: Puya ferruginea (Ev: 11–15); Tillandsia latifolia (Ev: 16–20); Cactaceae: Armatocereus matucanensis (Pv: 21–22; Dt: 23; Ev: 24–25); Borzicactus fieldianus (Pv
Image
Angiosperms. Polygonaceae: Rumex conglomeratus (Pv: 1–3; Ev: 4–5). Portulacaceae: Portulaca nivea (Gv: 6–7,9; Dt: 8,10). Primulaceae: Lysimachia arvensis (Pv: 11–13; Ev: 14–15). Rosaceae: Hesperomeles ferruginea (Pv: 16–17; Ev: 18–20); Rubus urticifolius (Pv: 21–23; Ev: 24–25). Rubiaceae: Arcytophyllum thymifolium (Pv: 26–27; Ev: 28–30); Randia armata (Gv: 31–35); Sapindaceae: Cardiospermum grandiflorum (Pv: 36–40). Ev = equatorial view; Pv = polar view; Gv = general view; Dt = detail. Photographs were taken at 100× magnification, with the exception of 6–7, 9 (at 40× magnification).
Published: 27 December 2024
Plate 20. Angiosperms. Polygonaceae: Rumex conglomeratus (Pv: 1–3; Ev: 4–5). Portulacaceae: Portulaca nivea (Gv: 6–7,9; Dt: 8,10). Primulaceae: Lysimachia arvensis (Pv: 11–13; Ev: 14–15). Rosaceae: Hesperomeles ferruginea (Pv: 16–17; Ev: 18–20); Rubus urticifolius (Pv: 21–23; Ev: 24–25
Image
Main pollen types found in the honey samples from Apis mellifera and Melipona eburnea: 1-4 Muntingia calabruna. 1-2 equatorial view. 3-4 polar view; 5-6 Myrcia type (polar view); 7-8 Pear type (equatorial view); 9-12 Piptocoma discolor. 9-11 polar view. 12 equatorial view; 13-14 Poaceae type; 15-18 Protium type. 15-16 polar view. 17-18 equatorial view; 19-22 Tapirira guianensis. 19-20 polar view. 21-22 equatorial view; 23-24 Vochysia ferruginea (polar view). 100X magnification. scale bar = 10 µm.
Published: 03 April 2022
-14 Poaceae type; 15-18 Protium type. 15-16 polar view. 17-18 equatorial view; 19-22 Tapirira guianensis . 19-20 polar view. 21-22 equatorial view; 23-24 Vochysia ferruginea (polar view). 100X magnification. scale bar = 10 µm.
Image
MALVACEAE: Catostemma commune (163), Eriotheca globosa (164), Peltaea trinervis (165), Pochota minor (166), Sida linifolia (167). MELIACEAE: Cedrela odorata (168), Trichilia septentrionalis (169). MENISPERMACEAE: Abuta imene (170), Cissampelos andromorpha (171). MYRISTICACEAE: Virola surinamensis (172). MYRSINACEAE: Myrsine coriacea (173), M. resinosa (174), M. nitida (175). MYRTACEAE: Calyptranthes pulchella (176), Psidium acutangulum (177), Eugenia punicifolia (178), Marlierea ferruginea (179), Myrcia albidotomentosa (180), Siphoneugena dussii (181). OCHNACEAE: Cespedesia spathulata (182). OLACACEAE: Minquartia guianensis (183). For figs. 165 and 167, the scale bar represents 40 μm.
Published: 01 December 2011
). MYRISTICACEAE: Virola surinamensis (172). MYRSINACEAE: Myrsine coriacea (173), M. resinosa (174), M. nitida (175). MYRTACEAE: Calyptranthes pulchella (176), Psidium acutangulum (177), Eugenia punicifolia (178), Marlierea ferruginea (179), Myrcia albidotomentosa (180), Siphoneugena dussii
Journal Article
Journal: Elements
Published: 01 April 2011
Elements (2011) 7 (2): 89–93.
... 2 levels below 1.0 mg per liter and redox conditions about 200–300 mV lower than those of typical surface waters (characteristic of some iron springs, stratified bodies of water, and hydrothermal vent systems), microaerophilic bacteria such as Gallionella ferruginea play an important role in Fe...
FIGURES | View All (6)
Image
The scale bars represent 10 µm. Photographs were taken at 100× magnification. Ev = equatorial view; Pv = polar view; Gv = general view. Verbenaceae:Citharexylum macrophyllum (Ev: 2–4; Pv: 1, 5–6, 13–14); Petrea volubilis (Pv: 7–8). Violaceae:Gloeospermum sphaerocarpum (Ev: 9–10); Leonia cymosa (Ev: 11–12, 19–20; Pv: 17–18); Rinorea guianensis (Ev: 25–26, 35; Pv: 15–16); Rinorea squamata (Ev: 23, 33–34, 44; Pv: 21–22, 24). Vochysiaceae:Erisma calcaratum (Ev: 27–30; Pv: 39–40); Ruizterania cassiquiarensis (Ev: 31–32, 41; Pv: 42–43); Vochysia ferruginea (Ev: 36–37, 45; Pv: 38, 46).
Published: 02 January 2020
); Leonia cymosa (Ev: 11–12, 19–20; Pv: 17–18); Rinorea guianensis (Ev: 25–26, 35; Pv: 15–16); Rinorea squamata (Ev: 23, 33–34, 44; Pv: 21–22, 24). Vochysiaceae: Erisma calcaratum (Ev: 27–30; Pv: 39–40); Ruizterania cassiquiarensis (Ev: 31–32, 41; Pv: 42–43); Vochysia ferruginea (Ev: 36–37, 45
Journal Article
Journal: Geology
Published: 01 August 2012
Geology (2012) 40 (8): 747–750.
... of metals by bacteriogenic iron oxides in a subterranean environment : Geomicrobiology Journal , v. 16 , p. 181 – 192 , doi:10.1080/014904599270677 . Hallbeck L. Pedersen K. , 1991 , Autotrophic and mixotrophic growth of Gallionella ferruginea : Journal of General Microbiology , v...
FIGURES
Journal Article
Journal: Geology
Published: 01 December 2002
Geology (2002) 30 (12): 1079–1082.
...) speculated that oxidation of Fe 2+ by chemolithoautotrophic species such as Gallionella ferruginea in an ocean with limited free photosynthetic oxygen may have been responsible for the precipitation of ferric iron over wide ocean basins: Today, under microaerobic conditions (e.g., in freshwater...
Journal Article
Published: 01 February 1989
Quarterly Journal of Engineering Geology and Hydrogeology (1989) 22 (1): 75–80.
... development in deep groundwater by Gallionella ferruginea. Vatten 41 , 263 – 265 . Sharma, H. D. & Chawla, A. S. 1977. Manual on groundwater and tubewells. Technical Report 18, Central Board of Irrigation and Power, New Delhi, India, 200 pp. van Beek, C. G. E. M. 1984 . Restoring...
Journal Article
Published: 01 December 2006
Mineralogical Magazine (2006) 70 (6): 731–741.
...F ig . 6. Back-scattered electron micrograph, with accelerating voltage of 3.0 kV and a working distance of 9.4 mm, of a Gallionella ferruginea stalk which is encrusted in ferrihydrite and goethite. This specimen was taken from the upper oxidized layer of the core. ...
FIGURES | View All (8)
Journal Article
Journal: GSA Bulletin
Published: 03 April 2025
GSA Bulletin (2025)
... ferruginea (Reeve) (Fig. 4E) was discovered in the lower fossil horizon (Fossil zone I) of the Mishan Formation. Similar marine fossils were reported in Indonesia by Beets (1984). The co-existence of this fossil in Iran and Indonesia suggests that the Tethyan Seaway was likely a water channel that connected...
Image
Microorganisms can produce copious quantities of nanoparticles. a). Field-emission scanning electron microscopy (SEM) micrograph of spherical aggregates of ZnS nanoparticles (with trace amounts of Fe, As, and Se) in a sulfate-reducing bacteria dominated biofilm growing on wood in neutralized acid-mine drainage (Moreau et al. 2003). Draped over the aggregates is a dehydrated filamentous microbial cell of a morphology commonly observed in ZnS-dense regions within the biofilm. Image courtesy of John Moreau. b). High-resolution SEM image of a fractured sulfate reducing bacterium encrusted in aggregates of compositionally mixed ZnS and FeS nanoparticles (Williams et al. 2005). Inset: Higher magnification view of biomineral coating around a fracture cell. Images courtesy of Ken Williams. c). SEM micrograph of iron oxyhydroxide nanoparticle coatings on microbial structures from biofilms from the Piquette Mine, Tennyson, WI. The twisted stalks and cylindrical sheaths are characteristic products of Gallionella ferruginea (an iron oxidizer) and Leptothrix spp. (a putative iron oxidizer), respectively. Image courtesy of Susan Welch and Clara Chan. d). Transmission electron micrograph of aggregated UO2 nanoparticles adhering to the surfaces of sulfate reducing bacteria taken from the Midnite Mine, Washington, USA (Suzuki et al. 2002). Image courtesy of Yohey Suzuki.
Published: 01 January 2005
the Piquette Mine, Tennyson, WI. The twisted stalks and cylindrical sheaths are characteristic products of Gallionella ferruginea (an iron oxidizer) and Leptothrix spp. (a putative iron oxidizer), respectively. Image courtesy of Susan Welch and Clara Chan. d). Transmission electron micrograph of aggregated
Image
 Figure6—Middle Cambrian microfossils from upper Chamberlain's Brook Formation (Fossil Brook Member) of the Beaver Harbour succession, southern New Brunswick; specimens from BHr-IV-5.9, unless otherwise indicated. 1, 2,Hyolithellus sinuosusCobbold, 1921, NBMG 12579 and 12580 showing prominent and obsolescent transverse ridges, ×35 and ×22, respectively, BHr-IV-6.9. 3, Hexactinellid hexaxon, NBMG 12581, ×76. 4, 5,Helcionella oblongaCobbold, 1921, dorsolateral and dorsal views of steinkern, ×38, NBMG 12582. 6–8, Echinoderm sclerites; 6, dermal plate, NBMG 12583, ×48; 7, columnal, NBMG 12584, ×109; 8, “spindle,” NBMG 12585, ×38. 9, 10,Lingulella ferruginea Salter inSalter and Hicks, 1867, visceral and external views of pedicle valves, NBMG 12586, ×26, BHr-IV-5.9, and NBMG 12587, ×22, BHr-IV-6.9. 11–18,Acrothyra sera? Matthew, 1902a, Figure 6.17 from BHr-IV-6.9. 11– 14, brachial; 11, 12, external and visceral views of undistorted and tectonically sheared valves, NBMG 12588 and 12589, ×40; 13, 14, external and visceral views of tectonically distorted and undistorted valves, NBMG 12590 and 12591, ×33 and ×66; 15–18, pedicle valves, Figure 6.17 specimen tectonically elongated on anterior-posterior axis, NBMG 12592–12595, ×33, ×56, ×33, ×39, respectively
Published: 01 September 2008
, columnal, NBMG 12584, ×109; 8, “spindle,” NBMG 12585, ×38. 9, 10, Lingulella ferruginea Salter in Salter and Hicks, 1867 , visceral and external views of pedicle valves, NBMG 12586, ×26, BHr-IV-5.9, and NBMG 12587, ×22, BHr-IV-6.9. 11–18, Acrothyra sera ? Matthew, 1902a , Figure 6.17 from BHr-IV
Journal Article
Published: 01 January 2013
American Mineralogist (2013) 98 (1): 85–97.
... structure is representative of the Gallionella ferruginea stalk ( Hallbeck and Pedersen 1991 ). Oval and spherical features also occur in some samples. The spheres often have small diameters ranging from 0.1–1 μm and encrust the precursor filaments. Most features of these microbes are hidden under...
FIGURES | View All (9)