- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Asia
-
Middle East
-
Iran (1)
-
-
-
-
geologic age
-
Mesozoic
-
Triassic (1)
-
-
-
metamorphic rocks
-
turbidite (1)
-
-
Primary terms
-
Asia
-
Middle East
-
Iran (1)
-
-
-
Mesozoic
-
Triassic (1)
-
-
plate tectonics (1)
-
sedimentary rocks
-
clastic rocks
-
conglomerate (1)
-
sandstone (1)
-
shale (1)
-
-
-
-
sedimentary rocks
-
sedimentary rocks
-
clastic rocks
-
conglomerate (1)
-
sandstone (1)
-
shale (1)
-
-
-
turbidite (1)
-
-
sediments
-
turbidite (1)
-
Baqoroq Formation
The Triassic stratigraphic succession of Nakhlak (Central Iran), a record from an active margin
Abstract An important, 2.4 km-thick Triassic succession is exposed at Nakhlak (central Iran). This succession was deformed during the Cimmerian orogeny and truncated by an angular unconformity with undeformed Upper Cretaceous sediments. This integrated stratigraphic study of the Triassic included bed-by-bed sampling for ammonoids, conodonts and bivalves, as well as limestone and sandstone petrographic analyses. The Nakhlak Group succession consists of three formations: Alam (Olenekian–Anisian), Bāqoroq (?Upper Anisian–Ladinian) and Ashin (Upper Ladinian). The Alam Formation records several shifts from carbonate to siliciclastic deposition, the Bāqoroq Formation consists of continental conglomerates and the Ashin Formation documents the transition to deep-sea turbiditic sedimentation. Petrographic composition has been studied for sandstones and conglomerates. Provenance analysis for Alam and most of the Ashin samples suggests a volcanic arc setting, whereas the samples from the Bāqoroq Formation are related to exhumation of a metamorphic basement. The provenance data, together with the great thickness, the sudden change of facies, the abundance of volcaniclastic supply, the relatively common occurrence of tuffitic layers and the orogenic calc-alkaline affinity of the volcanism, point to sedimentation along an active margin in a forearc setting. A comparison between the Triassic of Nakhlak and the Triassic succession exposed in the erosional window of Aghdarband (Koppeh Dag, NE Iran) indicates that both were deposited along active margins. However, they do not show the same type of evolution. Nakhlak and Aghdarband have quite different ammonoid faunal affinities during the Early Triassic, but similar faunal composition from the Bithynian to Late Ladinian. These results argue against the location of Nakhlak close to Aghdarband.
The Triassic and associated rocks of the Nakhlak and Aghdarband areas in central and northeastern Iran as remnants of the southern Turanian active continental margin
Abstract New structural, sedimentological, petrological and palaeomagnetic data collected in the region of Nakhlak–Anarak provide important constraints on the Cimmerian evolution of Central Iran. The Olenekian–Upper Ladinian succession of Nakhlak was deposited in a forearc setting, and records the exhumation and erosion of an orogenic wedge, possibly located in the present-day Anarak region. The Triassic succession was deformed after Ladinian times and shows south-vergent folds and thrusts unconformably covered by Upper Cretaceous limestones following the Late Jurassic Neo-Cimmerian deformation. Palaeomagnetic data obtained in the Olenekian succession suggest a palaeoposition of the region close to Eurasia at a latitude around 20°N. In addition, the palaeopoles do not support large anticlockwise rotations around vertical axes for central Iran with respect to Eurasia since the Middle Triassic, as previously suggested. The Anarak Metamorphic Complex (AMC) includes blueschist-facies metabasites associated with discontinuous slivers of serpentinized ultramafic rocks and Carboniferous greenschist-facies ‘Variscan’ metamorphic rocks, including widespread metacarbonates. The AMC was formed, at least partially, in the Triassic. Its erosion is recorded by the Middle Triassic Bāqoroq Formation at Nakhlak, which consists of conglomerates and sandstones rich in metamorphic detritus. The AMC was repeatedly deformed during post-Triassic times, giving origin to a complex structural setting characterized by strong tectonic fragmentation of previously formed tectonic units. Based on these data, we suggest that the Nakhlak–Anarak units represent an arc–trench system developed during the Eo-Cimmerian orogenic cycle. Different tectonic scenarios that can account for the evolution of the region and for the occurrence of this orogenic wedge in its present position within Central Iran are critically discussed, as well as its relationships with a presumed ‘Variscan’ metamorphic event.