- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Atlantic Ocean
-
North Atlantic
-
North Sea (1)
-
-
-
Caledonides (1)
-
Canada
-
Nunavut
-
Ellesmere Island (1)
-
-
Queen Elizabeth Islands
-
Ellesmere Island (1)
-
-
-
Europe
-
Western Europe
-
Scandinavia
-
Norway
-
Southern Norway (1)
-
-
-
-
-
-
elements, isotopes
-
carbon
-
C-13/C-12 (1)
-
-
isotope ratios (1)
-
isotopes
-
stable isotopes
-
C-13/C-12 (1)
-
Hf-177/Hf-176 (1)
-
O-18/O-16 (1)
-
Sr-87/Sr-86 (1)
-
-
-
metals
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (1)
-
-
-
hafnium
-
Hf-177/Hf-176 (1)
-
-
-
oxygen
-
O-18/O-16 (1)
-
-
-
geochronology methods
-
Ar/Ar (1)
-
U/Pb (1)
-
-
geologic age
-
Paleozoic
-
Cambrian
-
Lower Cambrian (1)
-
-
-
Precambrian
-
upper Precambrian
-
Proterozoic
-
Neoproterozoic
-
Ediacaran (1)
-
-
-
-
-
-
metamorphic rocks
-
metamorphic rocks
-
phyllites (1)
-
-
-
minerals
-
silicates
-
chain silicates
-
amphibole group
-
clinoamphibole
-
hornblende (1)
-
-
-
-
orthosilicates
-
nesosilicates
-
zircon group
-
zircon (1)
-
-
-
-
-
-
Primary terms
-
absolute age (1)
-
Atlantic Ocean
-
North Atlantic
-
North Sea (1)
-
-
-
Canada
-
Nunavut
-
Ellesmere Island (1)
-
-
Queen Elizabeth Islands
-
Ellesmere Island (1)
-
-
-
carbon
-
C-13/C-12 (1)
-
-
crust (1)
-
deformation (1)
-
Europe
-
Western Europe
-
Scandinavia
-
Norway
-
Southern Norway (1)
-
-
-
-
-
faults (1)
-
folds (1)
-
geophysical methods (2)
-
isotopes
-
stable isotopes
-
C-13/C-12 (1)
-
Hf-177/Hf-176 (1)
-
O-18/O-16 (1)
-
Sr-87/Sr-86 (1)
-
-
-
metals
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (1)
-
-
-
hafnium
-
Hf-177/Hf-176 (1)
-
-
-
metamorphic rocks
-
phyllites (1)
-
-
oxygen
-
O-18/O-16 (1)
-
-
Paleozoic
-
Cambrian
-
Lower Cambrian (1)
-
-
-
plate tectonics (1)
-
Precambrian
-
upper Precambrian
-
Proterozoic
-
Neoproterozoic
-
Ediacaran (1)
-
-
-
-
-
reservoirs (1)
-
sediments
-
clastic sediments
-
clay (1)
-
-
-
tectonics (1)
-
tunnels (1)
-
-
sediments
-
sediments
-
clastic sediments
-
clay (1)
-
-
-
Aurland Fjord
Airborne EM mapping of rockslides and tunneling hazards
The Hardangerfjord Shear Zone in SW Norway and the North Sea: a large-scale low-angle shear zone in the Caledonian crust
Late Ediacaran–early Cambrian rifting along the northern margin of Laurentia: constraints from the Yelverton Formation of Ellesmere Island, Canada
Rock slope instabilities in Sogn and Fjordane County, Norway: a detailed structural and geomorphological analysis
Abstract More than 250 rock slope failures have occurred in Sogn and Fjordane County in historical times. So far, 28 sites are known where open cracks indicate that rock slope failures may occur in the future. Detailed structural and geomorphological analyses of these sites have been conducted, and form the basis for an evaluation and comparison of the unstable rock slopes. Four of these sites are described in detail herein. The main characteristics for rock slope instabilities in Sogn and Fjordane are: (1) a preferred location within relatively weak rock units, such as phyllites and weathered mafic gneisses; and (2) the development of most instabilities at convex slope breaks, which are evident as knick-points in the slope profile. Sogn and Fjordane is compared with other Norwegian regions, particularly Møre and Romsdal County, with respect to the spatial distribution of past and current rock slope instabilities. Sogn and Fjordane shows the greatest number of historical slope failures, whereas in Møre and Romsdal a larger amount of potential instabilities is observed. We propose that the larger amount of unstable rock slopes in Møre and Romsdal may be controlled by a locally high gradient of ongoing post-glacial uplift and a higher rate of neotectonic activity.