Update search
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
Format
Article Type
Journal
Publisher
Section
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Asia
-
Central Asia
-
Pamirs (1)
-
-
Far East
-
China
-
Altun Mountains (1)
-
Altyn Tagh Fault (2)
-
Hainan China (1)
-
Kunlun Mountains (4)
-
Tarim Platform (1)
-
Xinjiang China
-
Taklimakan Desert (1)
-
Tarim Basin (1)
-
-
Xizang China (4)
-
Yunnan China
-
Tengchong (4)
-
-
-
Taiwan
-
Tatun Shan (1)
-
-
-
Middle East
-
Jordan (1)
-
-
Tibetan Plateau (7)
-
-
Eurasia (1)
-
United States
-
Arizona (1)
-
-
-
elements, isotopes
-
isotope ratios (1)
-
isotopes
-
radioactive isotopes
-
Pb-206/Pb-204 (1)
-
Pb-207/Pb-204 (1)
-
Pb-208/Pb-204 (1)
-
-
stable isotopes
-
Nd-144/Nd-143 (1)
-
Pb-206/Pb-204 (1)
-
Pb-207/Pb-204 (1)
-
Pb-208/Pb-204 (1)
-
Sr-87/Sr-86 (1)
-
-
-
metals
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (1)
-
-
-
lead
-
Pb-206/Pb-204 (1)
-
Pb-207/Pb-204 (1)
-
Pb-208/Pb-204 (1)
-
-
rare earths
-
neodymium
-
Nd-144/Nd-143 (1)
-
-
-
-
-
geochronology methods
-
Ar/Ar (1)
-
fission-track dating (1)
-
Nd/Nd (1)
-
optically stimulated luminescence (1)
-
Sr/Sr (1)
-
thermochronology (1)
-
U/Pb (2)
-
-
geologic age
-
Cenozoic
-
Quaternary
-
Holocene (4)
-
Pleistocene
-
upper Pleistocene (1)
-
-
-
Tertiary
-
Neogene
-
Pliocene (1)
-
-
Paleogene
-
Eocene
-
middle Eocene
-
Lutetian (1)
-
-
-
-
-
-
-
igneous rocks
-
igneous rocks
-
plutonic rocks
-
ultramafics
-
peridotites (1)
-
pyroxenite (1)
-
-
-
volcanic rocks
-
basalts
-
shoshonite (1)
-
-
-
-
-
minerals
-
oxides
-
iron oxides (1)
-
manganese oxides (1)
-
-
phosphates
-
apatite (1)
-
-
silicates
-
framework silicates
-
silica minerals
-
quartz (1)
-
-
-
orthosilicates
-
nesosilicates
-
olivine group
-
olivine (1)
-
-
zircon group
-
zircon (1)
-
-
-
-
-
-
Primary terms
-
absolute age (3)
-
Asia
-
Central Asia
-
Pamirs (1)
-
-
Far East
-
China
-
Altun Mountains (1)
-
Altyn Tagh Fault (2)
-
Hainan China (1)
-
Kunlun Mountains (4)
-
Tarim Platform (1)
-
Xinjiang China
-
Taklimakan Desert (1)
-
Tarim Basin (1)
-
-
Xizang China (4)
-
Yunnan China
-
Tengchong (4)
-
-
-
Taiwan
-
Tatun Shan (1)
-
-
-
Middle East
-
Jordan (1)
-
-
Tibetan Plateau (7)
-
-
Cenozoic
-
Quaternary
-
Holocene (4)
-
Pleistocene
-
upper Pleistocene (1)
-
-
-
Tertiary
-
Neogene
-
Pliocene (1)
-
-
Paleogene
-
Eocene
-
middle Eocene
-
Lutetian (1)
-
-
-
-
-
-
crystal chemistry (1)
-
data processing (1)
-
deformation (3)
-
diagenesis (1)
-
earthquakes (5)
-
Eurasia (1)
-
faults (3)
-
geochemistry (2)
-
geochronology (2)
-
geomorphology (1)
-
geophysical methods (2)
-
igneous rocks
-
plutonic rocks
-
ultramafics
-
peridotites (1)
-
pyroxenite (1)
-
-
-
volcanic rocks
-
basalts
-
shoshonite (1)
-
-
-
-
inclusions (1)
-
isotopes
-
radioactive isotopes
-
Pb-206/Pb-204 (1)
-
Pb-207/Pb-204 (1)
-
Pb-208/Pb-204 (1)
-
-
stable isotopes
-
Nd-144/Nd-143 (1)
-
Pb-206/Pb-204 (1)
-
Pb-207/Pb-204 (1)
-
Pb-208/Pb-204 (1)
-
Sr-87/Sr-86 (1)
-
-
-
lava (1)
-
magmas (3)
-
mantle (4)
-
metals
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (1)
-
-
-
lead
-
Pb-206/Pb-204 (1)
-
Pb-207/Pb-204 (1)
-
Pb-208/Pb-204 (1)
-
-
rare earths
-
neodymium
-
Nd-144/Nd-143 (1)
-
-
-
-
petrology (1)
-
plate tectonics (2)
-
remote sensing (3)
-
sediments (1)
-
tectonics (3)
-
United States
-
Arizona (1)
-
-
weathering (1)
-
-
sediments
-
sediments (1)
-
GeoRef Categories
Era and Period
Epoch and Age
Book Series
Date
Availability
Ashikule Basin
Active fault distribution of and near the Ashikule basin, northwest Tibet, ... Available to Purchase
Stepover Rupture of the 2014 M w 7.0 Yutian, Xinjiang, Earthquake Available to Purchase
Magma plumbing system and origin of the intraplate volcanoes in Mainland China: an overview of constraints from geophysical imaging Available to Purchase
Abstract Volcanic eruptions, despite causing large-scale disasters, also provide important natural resources and are an effective way to understand the Earth's internal structure and its evolution. Herein, a comprehensive review is presented on recent progress in geophysical imaging of the structure and origin of intraplate volcanoes in Mainland China. We primarily focus on the Changbaishan, Wudalianchi, Tengchong, Hainan and Ashikule volcanoes as they are currently active and hence pose potential hazards during future eruptions, particularly the Changbaishan volcano. The Changbaishan and Wudalianchi volcanoes are widely believed to be caused by the dehydration of the stagnant Pacific slab in the mantle transition zone along with wet upwelling in the big mantle wedge. There are a number of different views regarding the formation mechanism of the Tengchong volcano. Some studies suggest that a big mantle wedge structure is also present under eastern Tibet, and the Tengchong volcano has a deep origin, similar to volcanism in NE China. Others suggest that the Tengchong volcano is caused by a local and shallow process. Most tomographic studies suggest that the Hainan volcano is a hotspot, and its track has been located in SE China by combining seismological, geochemical and numerical modelling data. A gap exists between the subducted Indian Plate and the Tarim lithosphere beneath the Ashikule volcano, which provides a channel for asthenospheric upwelling to give rise to intraplate volcanism in the Ashikule basin. The interactions of lithospheres may produce shear heating of the subcontinental lithospheric mantle, which can generate localized melting. This process has been proposed as an explanation for the intraplate volcanism in Ashikule.
Volcanic geology and petrochemistry of Ashikule volcanic field in western Kunlun Mountains of the Tibetan plateau Available to Purchase
Abstract Ashikule volcanic field, developed in the western Kunlun mountain of north Tibet, is composed of approximately 10 volcanoes, and covers a total area of about 200 km 2 at an average altitude of approximately 5000 m, one of the highest volcanic fields in the world. In this study, we conducted detailed field investigations of the geological and geomorphological features of volcanic rocks and volcanic edifices in Ashikule basin, and compiled a large-scale geological map of the study area for the first time. We also collected a series of samples for petrochemistry analysis, as well as a high-precision 40 Ar/ 39 Ar geochronology study of selected lavas from Ashikule volcanic field. Finally, we refined the eruption history for the volcanic activity in the basin, which provides some new volcanological evidence for the study of the tectonic evolution of the Northern Tibetan Plateau.
Source Model of the 2014 M w 6.9 Yutian Earthquake at the Southwestern End of the Altyn Tagh Fault in Tibet Estimated from Satellite Images Available to Purchase
Coseismic Surface Ruptures Associated with the 2014 M w 6.9 Yutian Earthquake on the Altyn Tagh Fault, Tibetan Plateau Available to Purchase
Baking black opal in the desert sun: The importance of silica in desert varnish: COMMENT AND REPLY: COMMENT Open Access
The July 2020 M w 6.3 Nima Earthquake, Central Tibet: A Shallow Normal‐Faulting Event Rupturing in a Stepover Zone Available to Purchase
Case Hardening: Turning Weathering Rinds into Protective Shells Available to Purchase
A review of present-day deformation of active volcanoes in China between 1970 and 2013 Available to Purchase
Abstract China has numerous active volcanoes, and more than 10 erupted in the Quaternary. Although a modern eruption event has not occurred in China, the potential risk from volcanic hazards should be noted. With the development of geodetic technologies including the Global Positioning System (GPS), levelling and interferometric synthetic aperture radar (InSAR), volcanologists can now detect the present-day deformation state of China's active volcanoes. In this paper, we summarize the present-day deformation patterns, magma sources and magma plumbing systems of China's active volcanoes between 1970 and 2013. The results show that the most active volcano in China is the Changbaishan volcano; it showed significant inflation from 2002–03, with the deformation becoming gradually weaker after 2003, indicating that it had been experiencing a magma process during 2000–10. A point source at a depth of c. 10 km was responsible for the observed deformation. The Leiqiong volcanic field showed a trough pattern deformation during 2007–10, which was interpreted as a dyke intrusion model. Fluctuant deformation patterns were shown in the Tengchong volcanic field. The Longgang volcanic field had experienced a volcano-wide uplift during the 1970s and 1990s. Deformation was observed in the Tatun volcanic field from 2006–13, and two shallow sources account for the observed deformation. These volcanoes merit further monitoring given possible evidence of deformation. No obvious deformation related to volcanic activity was observed at the Ashikule volcanic field from 2003–11. The results provide a basic introduction to the deformation state of China's active volcanoes, and may be helpful for evaluating the activity levels of China's volcanoes and mitigating the risks of future volcanic hazards.
Diachronous Tibetan Plateau landscape evolution derived from lava field geomorphology Open Access
Perspectives on the active volcanoes of China Available to Purchase
Abstract China has a rich record of Holocene volcanism that is relatively little known outside the country. It is encountered in large stratovolcanoes in the NE, linked to subduction of the Pacific plate (e.g. Changbaishan), in smaller volcanoes on the Tibetan margin, associated with the collision of India and Eurasia (e.g. Tengchong, Ashishan), and in more isolated centres, possibly resulting from mantle upwelling (e.g. volcanoes in Hainan island). This makes China a natural laboratory for studies of intraplate volcanism, and significant progress in understanding its nature and origins has been made over the past quarter century. Here, we introduce the first publication in English to provide a comprehensive survey of the state of knowledge and research highlights. Accordingly, we provide an overview of the dynamics, geology, geochemistry, volcanic histories and geophysical studies of 14 volcanic areas associated with the Holocene documented thus far. The special publication represents a benchmark reference on the topic but, as importantly, we hope that it will stimulate new, international collaborations aimed at deepening our understanding of the origins, history, hazards and associated risks of China's volcanoes.
Cenozoic intraplate volcanism in central Asia: Mantle upwelling induced by India-Eurasia collision Available to Purchase
Controls on erosion in the western Tarim Basin: Implications for the uplift of northwest Tibet and the Pamir Open Access
Cenozoic volcanism along Dahongliutan fault in the West Kunlun Mountains, China: implication from distribution of volcanic rocks, volcanic geology, and geochemistry Available to Purchase
Abstract In the West Kunlun Mountains, four volcanic fields (Kangxiwa, Dahongliutan, Qitaidaban and Quanshuigou) are distributed along the Dahongliutan fault, which is c. 180 km long. Based on field investigations, chronological measurements and geochemical analysis of some volcanic fields, the results of geological, geochemical and geophysical research in previous studies in the corresponding study areas are summarized. The volcanic activities in these areas were mainly effusive eruptions, explosive eruptions and phreatomagmatic eruptions. In this study, we discovered the Qitaiyanhu volcanic field for the first time and determined that the 14 C age of the lacustrine strata underlying the Qitaiyanhu lava flows is 13.110 ± 0.04 ka BP, indicating that there may still have been volcanic activities in the late Pleistocene and even the Holocene in the Dahongliutan fault area. Base surge deposits, which are the products of the interaction between magma and water, were found in the Kangxiwa volcanic field. The four shoshonitic rock fields of Kangxiwa, Dahongliutan, Qitaidaban and Quanshuigou are likely to be products of different evolution stages from the same magma source area. The magmatic origin of these volcanic fields may be related to the upwelling of the asthenosphere, triggered by the collision between the Indian and Tarim plates.
Development and status of active volcano monitoring in China Available to Purchase
Abstract Following decades of geological surveys and studies, 14 active volcanic fields have been identified in China. Evidence for Holocene volcanism in several of these areas highlights the need to understand and monitor volcanic hazards in those regions. Six volcano observatories have thus been established in the past 40 years. This work reviews China's national capability and history of volcano monitoring, with emphasis on the Changbaishan–Tianchi Volcano Observatory and the Tengchong Volcano Observatory. The Changbaishan–Tianchi Volcano Observatory (CTVO) was constructed in 1996 and began monitoring in 1999, with limited recorded observations dating back to 1973. Currently, CTVO is the largest and most advanced observatories in China. The monitoring network of the CTVO incorporates 11 seismic and 15 GPS stations, two levelling routes and three gas geochemistry sampling points. The Changbaishan–Tianchi Volcano experienced unrest during 2002–05, evidenced in elevated levels of seismicity and ground deformation, as well as shifts in gas geochemistry. After 2006, the volcano returned to quiescence, with activities at background levels as recorded in 1973–2001. The monitoring network of Tengchong Volcano Observatory incorporates eight seismic stations, 20 GPS points, 95 levelling points and three gas geochemistry sampling points. The observations made since 1965 indicate significant seismicity, with more than 3000 events recorded in 2011, mostly related to regional tectonics. Tengchong is known for its widespread hot springs, with temperatures up to 105°C recorded at Dagunguo spring. The four other observatories are Longgang Volcano Observatory, Jingbohu Volcano Observatory, Wudalianchi Volcano Observatory and Qiongbei Volcano Observatory. They are equipped with seismic, geodetic and geochemical monitoring equipment. These areas saw only low levels of activity over the past several decades, but related fault systems are relatively active. In a relatively short time, China has gained considerable experience in observatory design and volcano monitoring and has trained up a sizeable task force, laying the foundation for sustained volcano monitoring at the national level. Future efforts must focus on maintaining and expanding observational capacity, as well as gaining better dynamic understanding to inform volcano hazard assessment.
Petrology and geochemistry of postcollisional volcanic rocks from the Tibetan plateau: Implications for lithosphere heterogeneity and collision-induced asthenospheric mantle flow Available to Purchase
This article summarizes the geological setting, spatial-temporal distribution, and major-element, trace-element, and Nd-Sr-Pb isotopic compositional variation of rocks representative of Tibetan postcollisional magmatic activity. The implications of petrogenesis and spatial-temporal distribution are discussed in relation to lithospheric mantle heterogeneity and a possible role for collision-induced asthenospheric mantle flow. Rocks indicative of postcollisional volcanism are widely distributed across the terranes making up the Tibetan plateau. Three stages of activity are recognized (ca. 45–25, 25–5, and 5–0 Ma), mostly conforming to potassic to ultrapotassic shoshonitic and high-potassium calc-alkaline types. These show strong relative enrichments in large-ion lithophile elements (LILE), U, Th, and light rare earth elements (LREE); depletions in high field strength elements (HFSE) and heavy rare earth elements (HREE)—with (La/Yb) N ratios ranging from 4.3 to 699, mainly 40–50; ∑REE and abundances of 50–2560 ppm, mainly 300–500 ppm—in most cases lacking significant negative Eu anomalies. However, the element distributions for kamafugite and carbonatite show ocean island basalt–like nondepleted or even slightly enriched HFSE patterns. The plots of ϵNd versus 87 Sr/ 86 Sr define a mixing array between Neo-Tethyan mid-ocean ridge basalts (MORB) and High Himalayan crustal compositions, with ϵNd(t) varying from +5.95 to −17.42 and 87 Sr/ 86 Sr (i) 0.702059 to 0.746320. The range of Nd and Sr isotopic compositions in the northern parts of the plateau, Sanjiang, and west Qinling is relatively small compared to that from Gangdese to the south, where 87 Sr/ 86 Sr ratios range from 0.703785 to 0.746320 and 143 Nd/ 144 Nd from 0.511737 to 512710. The variation of Pb isotopic ratios is somewhat less, with 206 Pb/ 204 Pb ranging from 18.149 to 19.345, 207 Pb/ 204 Pb from 15.476 to 15.803, and 208 Pb/ 204 Pb from 37.613 to 40.168. In general, magmatic isotopic compositions indicate the regional-scale presence of DUPAL-like mantle, reflecting additions of the “enriched mantle” components (EM1, EM2) to an ambient MORB-HIMU (high μ, i.e., high U/Pb mantle) asthenospheric hybrid. The observed geochemical, isotopic, and mineral phase compositional variations of primitive magmatic products and their entrained mantle xenoliths clearly suggest LILE-enriched and HFSE-depleted phlogopite/amphibole–bearing mantle wedge sources contaminated by (presumably subduction-related) hydrous fluids or smallfraction H 2 O-CO 2 –rich melts. Tibetan lithospheric mantle appears to reflect the presence of and interaction between at least three compositional end-members. The overall spatial-temporal pattern of Tibetan collisional and postcollisional activity is consistent with the hypothesis that the Neo-Tethyan asthenospheric mantle was laterally displaced along discrete northeast- and southwestward flow channels in response to the IndiaAsia collision.