Update search
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
Format
Article Type
Journal
Publisher
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
South America
-
Amazonian Craton (2)
-
Brazil
-
Para Brazil
-
Carajas mineral province (2)
-
-
-
-
-
elements, isotopes
-
isotope ratios (1)
-
isotopes
-
stable isotopes
-
Hf-177/Hf-176 (1)
-
Nd-144/Nd-143 (1)
-
-
-
Lu/Hf (1)
-
metals
-
hafnium
-
Hf-177/Hf-176 (1)
-
-
rare earths
-
neodymium
-
Nd-144/Nd-143 (1)
-
-
-
-
-
geochronology methods
-
Lu/Hf (1)
-
Sm/Nd (1)
-
U/Pb (2)
-
-
geologic age
-
Precambrian
-
Archean
-
Mesoarchean (1)
-
Neoarchean (1)
-
-
-
-
igneous rocks
-
igneous rocks
-
plutonic rocks
-
granites
-
A-type granites (1)
-
monzogranite (1)
-
-
-
-
-
Primary terms
-
absolute age (1)
-
deformation (1)
-
faults (1)
-
igneous rocks
-
plutonic rocks
-
granites
-
A-type granites (1)
-
monzogranite (1)
-
-
-
-
intrusions (1)
-
isotopes
-
stable isotopes
-
Hf-177/Hf-176 (1)
-
Nd-144/Nd-143 (1)
-
-
-
metals
-
hafnium
-
Hf-177/Hf-176 (1)
-
-
rare earths
-
neodymium
-
Nd-144/Nd-143 (1)
-
-
-
-
metasomatism (1)
-
Precambrian
-
Archean
-
Mesoarchean (1)
-
Neoarchean (1)
-
-
-
South America
-
Amazonian Craton (2)
-
Brazil
-
Para Brazil
-
Carajas mineral province (2)
-
-
-
-
structural analysis (1)
-
tectonics (1)
-
GeoRef Categories
Era and Period
Book Series
Date
Availability
Agua Limpa Pluton
Field relationships and textural aspects of the Água Limpa sanukitoid suite... Available to Purchase
Petrogenetic discrimination diagrams and trace element modelling for the ge... Available to Purchase
Representative ( a , c , e , g , i ) zircon cathodoluminescence images ... Available to Purchase
Geology, geochemistry and zircon SHRIMP U–Pb geochronology of Mesoarchean high-Mg granitoids: constraints on petrogenesis, emplacement timing and deformation of the Água Limpa suite in the Carajás Province, SE Amazonian Craton Available to Purchase
Proposed geological map for the Água Azul do Norte area, indicating the loc... Available to Purchase
Structural map of the Água Azul area showing the location of the Água Limpa... Available to Purchase
Petrogenesis and tectonic settings of the Neoarchean A-type granitoid complex from the Carajás Province, Amazonian craton: constraints from geochemistry, SHRIMP U‒Pb zircon geochronology and Hf–Nd isotopes Available to Purchase
The Itabirites of the Quádrilátero Ferrífero and Related High-Grade Iron Ore Deposits: An Overview Available to Purchase
Abstract The Quadrilátero Ferrífero district, located on the southern portion of the San Francisco craton in Minas Gerais, Brazil, comprises Archean greenstone terranes of the Nova Lima Supergroup and the Paleoproterozoic cratonic cover sequences of the Minas Supergroup that consist of quartzites, metaconglomerates, phyllites, dolomites, and banded iron formations. The Minas Supergroup was affected by two orogenic events—the Paleoproterozoic Transamazonian-Mineiro (2.1–2.0 Ga) orogeny and the Neoproterozoic to Early Paleozoic Brasiliano-Araçuaí (0.65–0.50 Ga) orogeny, resulting in complex deformation and metamorphic grades that increase from greenschist facies in the West to amphibolite facies in the East. Metamorphosed iron formations, referred to as itabirites, are found in three compositionally distinct lithofacies, namely quartz itabirite, dolomitic itabirite, and amphibolitic itabirite; these lithofacies are host to a large number of economically important high-grade iron ore deposits that give rise to the name Quadrilátero Ferrífero, or "Iron Quadrangle." High-grade iron ores replace itabirites in tectonically favorable, low-strain sites. faults acted as conduits while large fold hinges were sinks for mineralizing fluids. Hard and fine-grained hematite and/or magnetite orebodies are in the western low-strain domain of the Quadrilátero Ferrífero. Subsequent deformation led to recrystallization and development of distinctly schistose high-grade hematite ores characteristic of the eastern high-strain domain. A combination of hypogene and geologically recent supergene processes is thus invoked to explain the formation of the high-grade iron ores of the Quadrilátero Ferrífero. Three stages of hypogene ore formation are distinguished. The first two of these stages took place early during the Transamazonian orogeny (2.1–2.0 Ga) and are well preserved in the western low-strain domain. During the first stage metamorphic fluids leached SiO 2 and carbonates and mobilized iron, which resulted in the formation of massive magnetite bodies, Fe oxide veins, and Fe-rich itabirite bodies; during the second stage, low-temperature, low-salinity fluids caused oxidation of magnetite and Fe-rich dolomite to hematite. The resulting ore is porous to massive and has a granoblastic fabric. The third and final hypogene stage of ore formation is related to thrusts of uncertain age (Transamazonian or Brasiliano orogeny), which dominate the tectonic structure of the eastern high-strain domain of the Quadrilátero Ferrífero. Crystallization of tabular hematite and large platy specularite crystals that overprint the preexisting granular fabric in the presence of high-salinity hydrothermal fluids are characteristic of this stage. During the Neogene, supergene residual enrichment processes gave rise to the formation of soft to friable hematite orebodies. The larger soft orebodies that surround some smaller hard high-grade orebodies are typically associated with dolomitic itabirite. Together, both ore types comprise the giant high-grade iron deposits typical for the Quadrilátero Ferrífero, resulting from the superposition of both hypogene and supergene processes. Pure supergene deposits are considerably smaller and do not extend to deeper levels below the erosion surface.