- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Arctic Ocean
-
Barents Sea (1)
-
Norwegian Sea
-
Haltenbanken (1)
-
Jan Mayen Ridge (1)
-
More Basin (2)
-
Voring Basin (5)
-
Voring Plateau (14)
-
-
-
Atlantic Ocean
-
North Atlantic
-
Blake-Bahama Outer Ridge (1)
-
Irminger Basin (1)
-
North Sea (4)
-
Northeast Atlantic (2)
-
Northwest Atlantic (1)
-
Rockall Trough (1)
-
-
-
Australasia
-
Australia
-
Eromanga Basin (1)
-
Queensland Australia (1)
-
-
-
Europe
-
Western Europe
-
Scandinavia
-
Norway
-
Nordland Norway
-
Lofoten Islands (1)
-
-
Northern Norway (1)
-
Trondelag (1)
-
Vesteralen (1)
-
-
-
United Kingdom
-
Great Britain
-
England
-
East Anglia
-
Norfolk England (1)
-
-
-
-
-
-
-
Indian Ocean
-
Great Australian Bight (1)
-
-
ODP Site 642 (1)
-
Pacific Ocean
-
East Pacific
-
Northeast Pacific (1)
-
-
North Pacific
-
Northeast Pacific (1)
-
Northwest Pacific
-
South China Sea (1)
-
-
-
West Pacific
-
Northwest Pacific
-
South China Sea (1)
-
-
-
-
-
commodities
-
energy sources (1)
-
petroleum
-
natural gas (2)
-
-
-
elements, isotopes
-
carbon
-
C-13/C-12 (1)
-
-
isotope ratios (1)
-
isotopes
-
stable isotopes
-
C-13/C-12 (1)
-
O-18/O-16 (1)
-
-
-
oxygen
-
O-18/O-16 (1)
-
-
-
fossils
-
microfossils (1)
-
palynomorphs
-
Dinoflagellata (1)
-
-
-
geochronology methods
-
Ar/Ar (1)
-
paleomagnetism (1)
-
-
geologic age
-
Cenozoic
-
Quaternary
-
Holocene (1)
-
Pleistocene
-
lower Pleistocene (1)
-
Matuyama Chron (1)
-
middle Pleistocene
-
Elsterian (1)
-
-
Saalian (1)
-
upper Pleistocene
-
Weichselian (1)
-
-
-
upper Quaternary
-
Brunhes Chron (1)
-
-
-
Tertiary
-
lower Tertiary (3)
-
Neogene
-
Pliocene
-
Cimmerian (1)
-
upper Pliocene (1)
-
-
-
Paleogene
-
Eocene (1)
-
Oligocene (1)
-
Paleocene
-
lower Paleocene (1)
-
-
-
-
-
Mesozoic
-
Cretaceous
-
Lower Cretaceous (2)
-
Upper Cretaceous
-
Campanian
-
lower Campanian (1)
-
-
Senonian (1)
-
-
-
Jurassic (1)
-
Triassic (1)
-
-
Paleozoic
-
Devonian (1)
-
Silurian (1)
-
-
Precambrian
-
upper Precambrian
-
Proterozoic
-
Neoproterozoic
-
Cryogenian (1)
-
-
-
-
-
-
igneous rocks
-
igneous rocks
-
volcanic rocks
-
pyroclastics
-
hyaloclastite (1)
-
-
-
-
-
metamorphic rocks
-
turbidite (1)
-
-
minerals
-
carbonates (2)
-
silicates
-
sheet silicates
-
mica group
-
muscovite (1)
-
-
-
-
-
Primary terms
-
absolute age (1)
-
Arctic Ocean
-
Barents Sea (1)
-
Norwegian Sea
-
Haltenbanken (1)
-
Jan Mayen Ridge (1)
-
More Basin (2)
-
Voring Basin (5)
-
Voring Plateau (14)
-
-
-
Atlantic Ocean
-
North Atlantic
-
Blake-Bahama Outer Ridge (1)
-
Irminger Basin (1)
-
North Sea (4)
-
Northeast Atlantic (2)
-
Northwest Atlantic (1)
-
Rockall Trough (1)
-
-
-
Australasia
-
Australia
-
Eromanga Basin (1)
-
Queensland Australia (1)
-
-
-
carbon
-
C-13/C-12 (1)
-
-
Cenozoic
-
Quaternary
-
Holocene (1)
-
Pleistocene
-
lower Pleistocene (1)
-
Matuyama Chron (1)
-
middle Pleistocene
-
Elsterian (1)
-
-
Saalian (1)
-
upper Pleistocene
-
Weichselian (1)
-
-
-
upper Quaternary
-
Brunhes Chron (1)
-
-
-
Tertiary
-
lower Tertiary (3)
-
Neogene
-
Pliocene
-
Cimmerian (1)
-
upper Pliocene (1)
-
-
-
Paleogene
-
Eocene (1)
-
Oligocene (1)
-
Paleocene
-
lower Paleocene (1)
-
-
-
-
-
climate change (1)
-
continental shelf (4)
-
core (1)
-
crust (3)
-
data processing (1)
-
Deep Sea Drilling Project
-
IPOD
-
Leg 94
-
DSDP Site 610 (1)
-
-
-
-
deformation (1)
-
diagenesis (1)
-
economic geology (1)
-
energy sources (1)
-
Europe
-
Western Europe
-
Scandinavia
-
Norway
-
Nordland Norway
-
Lofoten Islands (1)
-
-
Northern Norway (1)
-
Trondelag (1)
-
Vesteralen (1)
-
-
-
United Kingdom
-
Great Britain
-
England
-
East Anglia
-
Norfolk England (1)
-
-
-
-
-
-
-
faults (5)
-
fractures (1)
-
geochemistry (1)
-
geophysical methods (12)
-
glacial geology (1)
-
igneous rocks
-
volcanic rocks
-
pyroclastics
-
hyaloclastite (1)
-
-
-
-
Indian Ocean
-
Great Australian Bight (1)
-
-
Integrated Ocean Drilling Program (1)
-
intrusions (1)
-
isostasy (1)
-
isotopes
-
stable isotopes
-
C-13/C-12 (1)
-
O-18/O-16 (1)
-
-
-
magmas (1)
-
mantle (1)
-
Mesozoic
-
Cretaceous
-
Lower Cretaceous (2)
-
Upper Cretaceous
-
Campanian
-
lower Campanian (1)
-
-
Senonian (1)
-
-
-
Jurassic (1)
-
Triassic (1)
-
-
ocean basins (1)
-
Ocean Drilling Program
-
Leg 104
-
ODP Site 644 (3)
-
-
Leg 152
-
ODP Site 919 (1)
-
-
Leg 168
-
ODP Site 1028 (1)
-
-
Leg 172
-
ODP Site 1060 (1)
-
-
Leg 182
-
ODP Site 1131 (1)
-
-
Leg 184
-
ODP Site 1145 (1)
-
-
-
ocean floors (3)
-
oxygen
-
O-18/O-16 (1)
-
-
Pacific Ocean
-
East Pacific
-
Northeast Pacific (1)
-
-
North Pacific
-
Northeast Pacific (1)
-
Northwest Pacific
-
South China Sea (1)
-
-
-
West Pacific
-
Northwest Pacific
-
South China Sea (1)
-
-
-
-
paleoclimatology (1)
-
paleoecology (1)
-
paleomagnetism (1)
-
Paleozoic
-
Devonian (1)
-
Silurian (1)
-
-
palynomorphs
-
Dinoflagellata (1)
-
-
petroleum
-
natural gas (2)
-
-
plate tectonics (8)
-
Precambrian
-
upper Precambrian
-
Proterozoic
-
Neoproterozoic
-
Cryogenian (1)
-
-
-
-
-
sea-floor spreading (1)
-
sea-level changes (2)
-
sedimentary rocks
-
carbonate rocks
-
chalk (1)
-
-
chemically precipitated rocks
-
evaporites (1)
-
-
clastic rocks
-
claystone (1)
-
mudstone (1)
-
red beds (1)
-
sandstone (3)
-
shale (2)
-
-
-
sedimentary structures
-
soft sediment deformation (1)
-
-
sedimentation (2)
-
sediments
-
clastic sediments
-
ooze (1)
-
-
marine sediments (5)
-
-
tectonics (8)
-
-
sedimentary rocks
-
sedimentary rocks
-
carbonate rocks
-
chalk (1)
-
-
chemically precipitated rocks
-
evaporites (1)
-
-
clastic rocks
-
claystone (1)
-
mudstone (1)
-
red beds (1)
-
sandstone (3)
-
shale (2)
-
-
-
turbidite (1)
-
-
sedimentary structures
-
sedimentary structures
-
soft sediment deformation (1)
-
-
-
sediments
-
sediments
-
clastic sediments
-
ooze (1)
-
-
marine sediments (5)
-
-
turbidite (1)
-
Submarine volcanism along shallow ridges did not drive Cryogenian cap carbonate formation
Abstract Twenty magnetostratigraphic profiles from IODP (International Oceanic Drilling Project) sediment cores distributed on the Earth's surface allowed the scatter of virtual geomagnetic poles (VGPs) during Brunhes–Matuyama times to be examined. We identified two groups of recording sites which give different paths for the VGPs during a time interval of about 1.1 myr. Calculations of the VGP velocities and accelerations, as well as the corresponding azimuths, resulted in mean/median values like those observed for recent times. No significant differences were observed during the ‘stable’ and transitional fields. The acceleration azimuths show variations from north–south to east–west depending on the field state: normal/reversed or transitional. Despite the uncertainties in the magnetization of the sediments (overprints and/or low-resolution records), we demonstrate that the use of this database is valid for obtaining kinematic parameters of the geomagnetic field when analysed on a statistical basis.
Ultra-slow throw rates of polygonal fault systems
Controls on the reservoir quality of Late Cretaceous Springar Formation deep-water fan systems in the Vøring Basin
Abstract A new reservoir quality model is proposed for the Late Cretaceous Springar Formation sandstones of the Vøring Basin. Instead of a depth-related compactional control on reservoir quality, distinct high- and low-permeability trends are observed. Fan sequences which sit on the high-permeability trend are characterized by coarse-grained facies with a low matrix clay content. These facies represent the highest energy sandy turbidite facies within the depositional system, and were deposited in channelized or proximal lobe settings. Fan sequences on the low-permeability trend are characterized by their finer grain size and the presence of detrital clay, which has been diagenetically altered to a highly microporous, illitic, pore-filling clay. These fan sequences are interpreted to have been deposited in proximal–distal lobe environments. Original depositional facies determines the sorting, grain size and detrital clay content, and is the fundamental control on reservoir quality, as the illitization of detrital clay is the main mechanism for reductions in permeability. Core-scale depositional facies were linked to seismic-scale fan elements in order to better predict porosity and permeability within each fan system, allowing calibrated risking and ranking of prospects within the Springar Formation play.