- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Africa
-
North Africa
-
Egypt (1)
-
Tunisia (1)
-
-
Southern Africa (1)
-
-
Asia
-
Indian Peninsula
-
India (1)
-
-
Middle East
-
Israel (1)
-
-
-
Atlantic Ocean
-
North Atlantic (1)
-
South Atlantic
-
Walvis Ridge (2)
-
-
-
Chicxulub Crater (1)
-
Europe
-
Western Europe
-
Iceland
-
Laki (1)
-
-
-
-
North America
-
Western Interior
-
Western Interior Seaway (1)
-
-
-
United States
-
Atlantic Coastal Plain (1)
-
Texas
-
Brazos River (1)
-
-
-
-
elements, isotopes
-
carbon
-
C-13/C-12 (2)
-
-
isotope ratios (5)
-
isotopes
-
stable isotopes
-
C-13/C-12 (2)
-
Nd-144/Nd-143 (1)
-
O-18/O-16 (3)
-
Sr-87/Sr-86 (2)
-
-
-
metals
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (2)
-
-
-
rare earths
-
neodymium
-
Nd-144/Nd-143 (1)
-
-
-
-
oxygen
-
O-18/O-16 (3)
-
-
-
fossils
-
Invertebrata
-
Mollusca (1)
-
Protista
-
Foraminifera (4)
-
-
-
microfossils (3)
-
Plantae
-
algae
-
nannofossils (1)
-
-
-
thallophytes (1)
-
-
geologic age
-
Cenozoic
-
Tertiary
-
Paleogene
-
Paleocene
-
lower Paleocene
-
Danian (1)
-
K-T boundary (2)
-
-
-
-
-
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous
-
Campanian (1)
-
K-T boundary (2)
-
Maestrichtian
-
upper Maestrichtian (1)
-
-
Marshalltown Formation (1)
-
Navesink Formation (1)
-
Senonian (3)
-
-
-
-
Precambrian
-
upper Precambrian
-
Proterozoic
-
Damara System (1)
-
Neoproterozoic (1)
-
-
-
-
-
igneous rocks
-
igneous rocks
-
plutonic rocks
-
ultramafics
-
peridotites
-
harzburgite (1)
-
lherzolite (1)
-
-
-
-
volcanic rocks
-
basalts (1)
-
-
-
-
Primary terms
-
Africa
-
North Africa
-
Egypt (1)
-
Tunisia (1)
-
-
Southern Africa (1)
-
-
Asia
-
Indian Peninsula
-
India (1)
-
-
Middle East
-
Israel (1)
-
-
-
Atlantic Ocean
-
North Atlantic (1)
-
South Atlantic
-
Walvis Ridge (2)
-
-
-
biogeography (1)
-
carbon
-
C-13/C-12 (2)
-
-
Cenozoic
-
Tertiary
-
Paleogene
-
Paleocene
-
lower Paleocene
-
Danian (1)
-
K-T boundary (2)
-
-
-
-
-
-
climate change (1)
-
continental drift (1)
-
Deep Sea Drilling Project
-
IPOD
-
Leg 74
-
DSDP Site 525 (5)
-
-
-
Leg 43
-
DSDP Site 384 (1)
-
-
-
Europe
-
Western Europe
-
Iceland
-
Laki (1)
-
-
-
-
geochemistry (1)
-
igneous rocks
-
plutonic rocks
-
ultramafics
-
peridotites
-
harzburgite (1)
-
lherzolite (1)
-
-
-
-
volcanic rocks
-
basalts (1)
-
-
-
inclusions (1)
-
Invertebrata
-
Mollusca (1)
-
Protista
-
Foraminifera (4)
-
-
-
isotopes
-
stable isotopes
-
C-13/C-12 (2)
-
Nd-144/Nd-143 (1)
-
O-18/O-16 (3)
-
Sr-87/Sr-86 (2)
-
-
-
mantle (1)
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous
-
Campanian (1)
-
K-T boundary (2)
-
Maestrichtian
-
upper Maestrichtian (1)
-
-
Marshalltown Formation (1)
-
Navesink Formation (1)
-
Senonian (3)
-
-
-
-
metals
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (2)
-
-
-
rare earths
-
neodymium
-
Nd-144/Nd-143 (1)
-
-
-
-
North America
-
Western Interior
-
Western Interior Seaway (1)
-
-
-
oxygen
-
O-18/O-16 (3)
-
-
paleoclimatology (2)
-
paleoecology (1)
-
Plantae
-
algae
-
nannofossils (1)
-
-
-
plate tectonics (1)
-
Precambrian
-
upper Precambrian
-
Proterozoic
-
Damara System (1)
-
Neoproterozoic (1)
-
-
-
-
sediments
-
clastic sediments (1)
-
-
thallophytes (1)
-
United States
-
Atlantic Coastal Plain (1)
-
Texas
-
Brazos River (1)
-
-
-
-
rock formations
-
Deccan Traps (1)
-
-
sediments
-
sediments
-
clastic sediments (1)
-
-
Effects of Deccan volcanism on paleoenvironment and planktic foraminifera: A global survey
Deccan volcanism, one of Earth's largest flood basalt provinces, erupted ~80% of its total volume (phase 2) during a relatively short time in the uppermost Maastrichtian paleomagnetic chron C29r and ended with the Cretaceous-Tertiary boundary mass extinction. Full biotic recovery in the marine realm was delayed at least 500 k.y. or until after the last Deccan eruptions in C29n (phase 3, 14% of the total Deccan volume). For over 30 yr, the mass extinction has been commonly attributed to the Chicxulub impact, and the delayed recovery remained an enigma. Here, we demonstrate that the two phases of Deccan volcanism can account for both the mass extinction and delayed marine recovery. In India, a direct correlation between Deccan eruptions (phase 2) and the mass extinction reveals that ~50% of the planktic foraminifer species gradually disappeared during volcanic eruptions prior to the first of four lava megaflows, reaching ~1500 km across India, and out to the Bay of Bengal. Another 50% disappeared after the first megaflow, and the mass extinction was complete with the last megaflow. Throughout this interval, blooms of the disaster opportunist Guembelitria cretacea dominate shallow-marine assemblages in coeval intervals from India to the Tethys and the Atlantic Oceans to Texas. Similar high-stress environments dominated by blooms of Guembelitria and/or Globoconusa are observed correlative with Deccan volcanism phase 3 in the early Danian C29n, followed by full biotic recovery after volcanism ended. The mass extinction and high-stress conditions may be explained by the intense Deccan volcanism leading to rapid global warming and cooling in C29r and C29n, enhanced weathering, continental runoff, and ocean acidification, resulting in a carbonate crisis in the marine environment.