- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Europe
-
Central Europe
-
Germany (1)
-
Hungary (1)
-
-
Southern Europe
-
Iberian Peninsula
-
Spain (1)
-
-
Italy (1)
-
-
Western Europe
-
France
-
Aquitaine Basin (3)
-
Charente France (12)
-
-
-
-
-
elements, isotopes
-
carbon
-
C-14 (1)
-
-
isotopes
-
radioactive isotopes
-
C-14 (1)
-
-
-
metals
-
aluminum (1)
-
iron
-
ferrous iron (1)
-
-
-
-
fossils
-
Chordata
-
Vertebrata
-
Pisces (1)
-
Tetrapoda
-
Mammalia
-
Theria
-
Eutheria
-
Primates
-
Hominidae
-
Australopithecinae
-
Australopithecus (1)
-
-
Homo
-
Homo sapiens
-
Homo sapiens neanderthalensis (1)
-
-
-
-
-
-
-
-
Reptilia (1)
-
-
-
-
Invertebrata
-
Cnidaria
-
Anthozoa (1)
-
-
Echinodermata
-
Echinozoa
-
Echinoidea (1)
-
-
-
Mollusca
-
Cephalopoda
-
Ammonoidea (1)
-
-
-
Protista
-
Foraminifera
-
Rotaliina
-
Cassidulinacea
-
Anomalinidae (1)
-
-
-
-
-
-
microfossils (1)
-
Plantae (2)
-
-
geochronology methods
-
Ar/Ar (1)
-
Th/U (1)
-
tree rings (1)
-
-
geologic age
-
Cenozoic
-
Quaternary (1)
-
Stone Age
-
Paleolithic (1)
-
-
Tertiary
-
Neogene
-
Pliocene (1)
-
-
-
-
Mesozoic
-
Cretaceous
-
Lower Cretaceous
-
Purbeckian (1)
-
-
Upper Cretaceous
-
Campanian (1)
-
Cenomanian
-
lower Cenomanian (1)
-
-
Maestrichtian (1)
-
Senonian (2)
-
Turonian
-
lower Turonian (1)
-
-
-
-
Jurassic
-
Lower Jurassic (1)
-
Upper Jurassic
-
Kimmeridgian (1)
-
Oxfordian (1)
-
-
-
-
-
minerals
-
oxides
-
hydroxides
-
iron hydroxides (1)
-
-
iron oxides (1)
-
-
silicates
-
sheet silicates
-
clay minerals
-
kaolinite (1)
-
montmorillonite (1)
-
smectite (1)
-
vermiculite (1)
-
-
illite (1)
-
-
-
-
Primary terms
-
absolute age (1)
-
carbon
-
C-14 (1)
-
-
Cenozoic
-
Quaternary (1)
-
Stone Age
-
Paleolithic (1)
-
-
Tertiary
-
Neogene
-
Pliocene (1)
-
-
-
-
Chordata
-
Vertebrata
-
Pisces (1)
-
Tetrapoda
-
Mammalia
-
Theria
-
Eutheria
-
Primates
-
Hominidae
-
Australopithecinae
-
Australopithecus (1)
-
-
Homo
-
Homo sapiens
-
Homo sapiens neanderthalensis (1)
-
-
-
-
-
-
-
-
Reptilia (1)
-
-
-
-
clay mineralogy (2)
-
data processing (1)
-
Europe
-
Central Europe
-
Germany (1)
-
Hungary (1)
-
-
Southern Europe
-
Iberian Peninsula
-
Spain (1)
-
-
Italy (1)
-
-
Western Europe
-
France
-
Aquitaine Basin (3)
-
Charente France (12)
-
-
-
-
fractures (1)
-
geochemistry (1)
-
geochronology (1)
-
ground water (1)
-
Invertebrata
-
Cnidaria
-
Anthozoa (1)
-
-
Echinodermata
-
Echinozoa
-
Echinoidea (1)
-
-
-
Mollusca
-
Cephalopoda
-
Ammonoidea (1)
-
-
-
Protista
-
Foraminifera
-
Rotaliina
-
Cassidulinacea
-
Anomalinidae (1)
-
-
-
-
-
-
isotopes
-
radioactive isotopes
-
C-14 (1)
-
-
-
Mesozoic
-
Cretaceous
-
Lower Cretaceous
-
Purbeckian (1)
-
-
Upper Cretaceous
-
Campanian (1)
-
Cenomanian
-
lower Cenomanian (1)
-
-
Maestrichtian (1)
-
Senonian (2)
-
Turonian
-
lower Turonian (1)
-
-
-
-
Jurassic
-
Lower Jurassic (1)
-
Upper Jurassic
-
Kimmeridgian (1)
-
Oxfordian (1)
-
-
-
-
metals
-
aluminum (1)
-
iron
-
ferrous iron (1)
-
-
-
paleobotany (2)
-
paleogeography (1)
-
paleontology (3)
-
Plantae (2)
-
reefs (1)
-
sea-level changes (1)
-
sedimentary petrology (1)
-
sedimentary rocks
-
carbonate rocks
-
limestone (2)
-
-
clastic rocks
-
bentonite (1)
-
-
-
sedimentary structures
-
planar bedding structures
-
cyclothems
-
megacyclothems (1)
-
-
-
-
sedimentation (2)
-
stratigraphy (2)
-
-
sedimentary rocks
-
oolite (1)
-
sedimentary rocks
-
carbonate rocks
-
limestone (2)
-
-
clastic rocks
-
bentonite (1)
-
-
-
-
sedimentary structures
-
sedimentary structures
-
planar bedding structures
-
cyclothems
-
megacyclothems (1)
-
-
-
-
-
sediments
-
oolite (1)
-
Composition variation of illite-vermiculite-smectite mixed-layer minerals in a bentonite bed from Charente (France)
Evidence of structural Fe(II) ions in Font-Bouillant kaolinites; a Moessbauer study
L'analyse d'images appliquee au traitement automatique de champs de fractures; proprietes geometriques et lois d'echelles
Variation in echinoid biodiversity during the Cenomanian-early Turonian transgressive episode in Charentes (France)
Archaeochronology seeks to establish absolute or relative dates for archaeological or paleoanthropological events. Therein, the scale, or the temporal resolution attainable, changes dramatically over the total time for human cultural and biological evolution. For radiometrically based dating methods, the half life (half lives) isotopic abundances, and contamination limit the intrinsic dating range, whereas factors, such as radiation dose, saturation effects, diffusivity, and chemical rates, limit other absolute archaeochronometers. As technology improves, however, precision usually increases, while the intrinsic dating limit can often be extended, thereby enhancing the scale. Even were the dating methods significantly more precise, contamination or sample degradation often further restrict a method’s utility, while the number of sites preserved diminishes the older they are. Moreover, the archaeological “distinctiveness” decreases, perhaps due to the imprecision in the dating methods, but possibly, because the tempo in human cultural and biological evolution has incrased exponentially. Increasingly finer archaeochronological scales have significantly altered archaeological paradigms, in all phases of hominid biological and cultural evolution from African Australopithecus’ skeletons to North American Homo sapiens sapiens’ longhouses. While multiple concordant dates may resolve the dating problem presented by a single method, often sample instability affects all the applicable methods. Frequently, relative methods can constrain the absolute date. The accuracy for any new method or a new application to different sample materials must be rigorously tested under controlled conditions for concordancy with other established methods. Concordancy tests, intra-and intersite correlation all require extensive knowledge about the inherent limitations in the different methods. Ultimately, it rests with the archaeologist to thoroughly understand those limitations, and the archaeochronologist to fully understand the archaeological problems.