- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Canada
-
Eastern Canada
-
Ontario (2)
-
Quebec
-
Abitibi County Quebec
-
Chibougamau Quebec (1)
-
-
-
-
Western Canada
-
British Columbia (2)
-
-
-
North America
-
Appalachians
-
Blue Ridge Province (1)
-
-
Canadian Shield
-
Grenville Province (2)
-
Superior Province
-
Abitibi Belt (2)
-
-
-
-
South America
-
Amazonian Craton (1)
-
-
United States
-
New York
-
Adirondack Mountains (1)
-
Tompkins County New York
-
Ithaca New York (1)
-
-
-
-
-
commodities
-
metal ores
-
copper ores (1)
-
gold ores (1)
-
lead ores (1)
-
lead-zinc deposits (1)
-
silver ores (1)
-
zinc ores (1)
-
-
mineral deposits, genesis (1)
-
mineral exploration (1)
-
-
elements, isotopes
-
isotope ratios (1)
-
isotopes
-
stable isotopes
-
Nd-144/Nd-143 (1)
-
-
-
metals
-
rare earths
-
neodymium
-
Nd-144/Nd-143 (1)
-
-
-
-
-
geochronology methods
-
Pb/Pb (1)
-
Sm/Nd (1)
-
U/Pb (1)
-
-
geologic age
-
Precambrian
-
Archean
-
Neoarchean (1)
-
-
upper Precambrian
-
Proterozoic
-
Mesoproterozoic (2)
-
Paleoproterozoic (1)
-
-
-
-
-
metamorphic rocks
-
metamorphic rocks
-
gneisses
-
orthogneiss (1)
-
-
granulites (1)
-
-
-
Primary terms
-
absolute age (3)
-
Canada
-
Eastern Canada
-
Ontario (2)
-
Quebec
-
Abitibi County Quebec
-
Chibougamau Quebec (1)
-
-
-
-
Western Canada
-
British Columbia (2)
-
-
-
crust (1)
-
deformation (1)
-
earthquakes (2)
-
faults (1)
-
folds (1)
-
geochemistry (1)
-
geomorphology (1)
-
geophysical methods (2)
-
isotopes
-
stable isotopes
-
Nd-144/Nd-143 (1)
-
-
-
metal ores
-
copper ores (1)
-
gold ores (1)
-
lead ores (1)
-
lead-zinc deposits (1)
-
silver ores (1)
-
zinc ores (1)
-
-
metals
-
rare earths
-
neodymium
-
Nd-144/Nd-143 (1)
-
-
-
-
metamorphic rocks
-
gneisses
-
orthogneiss (1)
-
-
granulites (1)
-
-
metamorphism (2)
-
metasomatism (1)
-
mineral deposits, genesis (1)
-
mineral exploration (1)
-
North America
-
Appalachians
-
Blue Ridge Province (1)
-
-
Canadian Shield
-
Grenville Province (2)
-
Superior Province
-
Abitibi Belt (2)
-
-
-
-
Precambrian
-
Archean
-
Neoarchean (1)
-
-
upper Precambrian
-
Proterozoic
-
Mesoproterozoic (2)
-
Paleoproterozoic (1)
-
-
-
-
sedimentation (1)
-
South America
-
Amazonian Craton (1)
-
-
tectonics (2)
-
United States
-
New York
-
Adirondack Mountains (1)
-
Tompkins County New York
-
Ithaca New York (1)
-
-
-
-
weathering (1)
-
Structural and Stratigraphic Controls on Magmatic, Volcanogenic, and Shear Zone-Hosted Mineralization in the Chapais-Chibougamau Mining Camp, Northeastern Abitibi, Canada(,)
In recent years, a rapidly expanding database, especially in sensitive high-resolution ion microprobe (SHRIMP) geochronology, has led to significant advances in understanding of the Precambrian tectonic evolution of the Grenville Province, including its Adirondack outlier, and the Mesoproterozoic inliers of the Appalachians. Based upon this information, we review the geochronology and tectonic evolution of these regions and significant similarities and differences between them. Isotopic data, including Pb isotopic mapping, suggest that a complex belt of marginal arcs and orogens existed from Labrador through the Adirondacks, the midcontinent, and into the southwest during the interval ca. 1.8–1.3 Ga. Other data indicate that Mesoproterozoic inliers of the Appalachians, extending from Vermont to at least as far south as the New Jersey Highlands, are, in part, similar in composition and age to rocks in the southwestern Grenville Province. Mesoproterozoic inliers of the Appalachian Blue Ridge likewise contain some lithologies similar to northern terranes but exhibit Nd and Pb isotopic characteristics suggesting non-Laurentian, and perhaps Amazonian, affinities. Models invoking an oblique collision of eastern Laurentia with Amazonia are consistent with paleomagnetic results, and collision is inferred to have begun at ca. 1.2 Ga. The collision resulted in both the ca. 1190–1140 Ma Shawinigan orogeny and the ca. 1090–980 Ma Grenvillian orogeny, which are well represented in the Appalachians. Several investigators have proposed that some Amazonian Mesoproterozoic crust may have been tectonically transferred to Laurentia at ca. 1.2 Ga. Data that potentially support or contradict this model are presented.