- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Altiplano (3)
-
Puna (4)
-
South America
-
Andes
-
Central Andes (1)
-
Eastern Cordillera (3)
-
-
Argentina
-
Salta Argentina (1)
-
-
Chile (1)
-
-
-
elements, isotopes
-
carbon
-
C-13/C-12 (1)
-
-
isotope ratios (1)
-
isotopes
-
stable isotopes
-
C-13/C-12 (1)
-
N-15/N-14 (1)
-
O-18/O-16 (1)
-
-
-
nitrogen
-
N-15/N-14 (1)
-
-
oxygen
-
O-18/O-16 (1)
-
-
-
fossils
-
Chordata
-
Vertebrata
-
Tetrapoda
-
Mammalia
-
Theria
-
Eutheria
-
Notoungulata (1)
-
-
-
-
-
-
-
-
geochronology methods
-
U/Pb (1)
-
-
geologic age
-
Cenozoic
-
Tertiary
-
Neogene
-
Miocene
-
upper Miocene (1)
-
-
-
Paleogene
-
Eocene
-
middle Eocene (1)
-
-
-
-
-
Mesozoic (1)
-
Paleozoic
-
Ordovician (1)
-
upper Paleozoic (1)
-
-
Precambrian
-
upper Precambrian
-
Proterozoic
-
Neoproterozoic (1)
-
-
-
-
-
igneous rocks
-
igneous rocks
-
plutonic rocks
-
granites (1)
-
-
volcanic rocks
-
pyroclastics
-
tuff (1)
-
-
-
-
-
metamorphic rocks
-
metamorphic rocks
-
metasedimentary rocks (1)
-
-
-
minerals
-
silicates
-
orthosilicates
-
nesosilicates
-
zircon group
-
zircon (1)
-
-
-
-
sheet silicates
-
clay minerals
-
smectite (1)
-
-
illite (1)
-
-
-
-
Primary terms
-
absolute age (1)
-
carbon
-
C-13/C-12 (1)
-
-
Cenozoic
-
Tertiary
-
Neogene
-
Miocene
-
upper Miocene (1)
-
-
-
Paleogene
-
Eocene
-
middle Eocene (1)
-
-
-
-
-
Chordata
-
Vertebrata
-
Tetrapoda
-
Mammalia
-
Theria
-
Eutheria
-
Notoungulata (1)
-
-
-
-
-
-
-
clay mineralogy (1)
-
igneous rocks
-
plutonic rocks
-
granites (1)
-
-
volcanic rocks
-
pyroclastics
-
tuff (1)
-
-
-
-
isotopes
-
stable isotopes
-
C-13/C-12 (1)
-
N-15/N-14 (1)
-
O-18/O-16 (1)
-
-
-
Mesozoic (1)
-
metamorphic rocks
-
metasedimentary rocks (1)
-
-
metamorphism (1)
-
nitrogen
-
N-15/N-14 (1)
-
-
orogeny (1)
-
oxygen
-
O-18/O-16 (1)
-
-
paleogeography (1)
-
Paleozoic
-
Ordovician (1)
-
upper Paleozoic (1)
-
-
Precambrian
-
upper Precambrian
-
Proterozoic
-
Neoproterozoic (1)
-
-
-
-
sedimentary rocks
-
clastic rocks
-
eolianite (1)
-
sandstone (2)
-
-
-
sedimentary structures
-
planar bedding structures
-
cross-bedding (1)
-
cross-stratification (1)
-
-
-
sedimentation (1)
-
sediments
-
clastic sediments
-
alluvium (1)
-
-
-
South America
-
Andes
-
Central Andes (1)
-
Eastern Cordillera (3)
-
-
Argentina
-
Salta Argentina (1)
-
-
Chile (1)
-
-
tectonics (3)
-
-
rock formations
-
Puncoviscana Formation (1)
-
Salta Group (1)
-
-
sedimentary rocks
-
sedimentary rocks
-
clastic rocks
-
eolianite (1)
-
sandstone (2)
-
-
-
siliciclastics (1)
-
-
sedimentary structures
-
sedimentary structures
-
planar bedding structures
-
cross-bedding (1)
-
cross-stratification (1)
-
-
-
-
sediments
-
sediments
-
clastic sediments
-
alluvium (1)
-
-
-
siliciclastics (1)
-
The late Miocene eolian record at the eastern margin of the Puna Plateau, NW Argentina: Evidence of upper-tropospheric paleocirculation
Lake deposystems are commonly associated with retroarc mountain belts in the geological record. These deposystems are poorly characterized in modern retroarcs, placing limits on our ability to interpret environmental signals from ancient deposits. To address this problem, we have synthesized our existing knowledge about the distribution, morphometrics, and sedimentary geochemical characteristics of tectonically formed lakes in the central Andean retroarc. Large, active mountain belts such as the Andes frequently create an excess of sediment, to the point that modeling and observational data both suggest their adjacent retroarc basins will be rapidly overfilled by sediments. Lake formation, requiring topographic closure, demands special conditions such as topographic isolation and arid climatic conditions to reduce sediment generation, and bedrock lithologies that yield little siliciclastic sediment. Lacustrine deposition in the modern Andean retroarc has different characteristics in the six major morphotectonic zones discussed. (1) High-elevation hinterland basins of the arid Puna-Altiplano Plateau frequently contain underfilled and balanced-filled lakes that are potentially long-lived and display relatively rapid sedimentation rates. (2) Lakes are rare in piggyback basins, although a transition zone exists where basins that originally formed as piggybacks are transferred to the hinterland through forward propagation of the thrust belt. Here, lakes are moderately abundant and long-lived and display somewhat lower sedimentation rates than in the hinterland. (3) Wedge-top and (4) foredeep deposystems of the Andean retroarc are generally overfilled, and lakes are small and ephemeral. (5) Semihumid Andean back-bulge basins contain abundant small lakes, which are moderately long-lived because of underfilling by sediment and low sedimentation rates. (6) Broken foreland lakes are common, typically underfilled, large, and long-lived playa or shallow systems.
The Miocene Arizaro Basin, central Andean hinterland: Response to partial lithosphere removal?
The Arizaro Basin in northwestern Argentina sits today in the western Puna Plateau at elevations of 3800–4200 m along the eastern flank of the Miocene to modern magmatic arc. The basin is roughly circular in plan view and ~100 km in diameter, and it was filled during Miocene time (ca. 21–9 Ma) by >3.5 km of eolian, alluvial, fluvial, and lacustrine sediment in addition to ash-fall tuffs from the Andean magmatic arc. The basin fill was subsequently shortened in its central part, and it has been uplifted and topographically inverted. The Arizaro Basin is not obviously related to known faults, nor does it exhibit a peripheral belt of coarse-grained sedimentary rocks derived from flanking topographically higher regions. Sandstone modal framework compositions are arkosic, but not as rich in volcanic lithic fragments as typical intra-arc basins. Detrital zircon U-Pb age spectra implicate source terranes in locally exposed Ordovician granitoid rocks, more distal Upper Paleozoic–Mesozoic arc terranes in western Argentina and possibly northern Chile, and the local Miocene magmatic arc. Depositional-age zircons are present in most of the sandstones analyzed for detrital zircon U-Pb geochronology, and zircon U-Pb ages from volcanic tuff layers provide independent chronological control. The tectonic component of subsidence initiated at low rates, accelerated to ~0.6 mm/yr during the medial stage of basin development, and tapered off to zero as the basin began to shorten internally and experience topographic inversion after ca. 10 Ma. Together, the data presented here suggest that the Arizaro Basin could have developed in response to the formation and gravitational foundering of a dense Rayleigh-Taylor–type instability in the lower crust and/or mantle lithosphere. Insofar as hinterland basins of uncertain tectonic affinity are widespread in the high central Andes, the model developed here may be relevant for other regions of enigmatic subsidence and sediment accumulation in the Andes and other cordilleran hinterland settings.