- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Asia
-
Far East
-
China
-
Xizang China (1)
-
-
-
-
Black Mountain (1)
-
Casa Diablo (1)
-
Clear Lake (17)
-
Coast Ranges (12)
-
Europe
-
Central Europe
-
Switzerland
-
Basel Switzerland (1)
-
-
-
Southern Europe
-
Italy
-
Campania Italy
-
Phlegraean Fields (1)
-
-
-
-
Western Europe
-
France
-
Bas-Rhin France
-
Soultz-sous-Forets France (1)
-
-
-
Iceland (1)
-
Netherlands (1)
-
-
-
Imperial Valley (1)
-
Mexico
-
Baja California (2)
-
-
North America (1)
-
Pacific Coast (1)
-
Pacific Ocean
-
East Pacific
-
Northeast Pacific (1)
-
-
North Pacific
-
Northeast Pacific (1)
-
-
-
San Andreas Fault (3)
-
Santa Cruz Mountains (1)
-
Sierra Nevada (1)
-
Steamboat Springs (1)
-
United States
-
California
-
Central California (7)
-
Colusa County California (4)
-
Contra Costa County California (2)
-
Fresno County California (1)
-
Glenn County California (4)
-
Humboldt County California (1)
-
Lake County California (33)
-
Los Angeles County California (2)
-
Marin County California (1)
-
Mendocino County California (3)
-
Napa County California (5)
-
Northern California (24)
-
Orange County California (1)
-
Salinian Block (1)
-
San Benito County California (1)
-
San Diego County California (1)
-
Santa Ana Mountains (1)
-
Santa Clara County California (1)
-
Santa Cruz County California (1)
-
Shasta County California (1)
-
Solano County California (1)
-
Sonoma County California
-
Santa Rosa California (1)
-
-
Tehama County California (2)
-
The Geysers (42)
-
Trinity County California (1)
-
Ventura County California
-
Simi Hills (1)
-
-
-
Columbia Plateau (1)
-
Louisiana (1)
-
Nevada (1)
-
Oregon (1)
-
Utah (1)
-
Washington (1)
-
Western U.S. (1)
-
Wyoming (1)
-
-
Walker Ridge (1)
-
-
commodities
-
geothermal energy (17)
-
metal ores
-
base metals (1)
-
gold ores (5)
-
mercury ores (6)
-
silver ores (1)
-
-
mineral deposits, genesis (5)
-
-
elements, isotopes
-
carbon
-
C-13/C-12 (1)
-
C-14 (1)
-
-
chemical ratios (1)
-
hydrogen
-
D/H (2)
-
-
isotope ratios (4)
-
isotopes
-
radioactive isotopes
-
C-14 (1)
-
Pb-206/Pb-204 (2)
-
Pb-207/Pb-204 (2)
-
Pb-208/Pb-204 (2)
-
-
stable isotopes
-
C-13/C-12 (1)
-
D/H (2)
-
Hf-177/Hf-176 (1)
-
O-18/O-16 (4)
-
Pb-206/Pb-204 (2)
-
Pb-207/Pb-204 (2)
-
Pb-208/Pb-204 (2)
-
S-34/S-32 (1)
-
Sr-87/Sr-86 (1)
-
-
-
metals
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (1)
-
-
-
hafnium
-
Hf-177/Hf-176 (1)
-
-
lead
-
Pb-206/Pb-204 (2)
-
Pb-207/Pb-204 (2)
-
Pb-208/Pb-204 (2)
-
-
mercury (2)
-
rare earths (3)
-
-
oxygen
-
O-18/O-16 (4)
-
-
sulfur
-
S-34/S-32 (1)
-
-
-
fossils
-
Chordata
-
Vertebrata
-
Pisces (2)
-
-
-
Invertebrata
-
Arthropoda
-
Mandibulata
-
Crustacea
-
Ostracoda (1)
-
-
-
-
Brachiopoda
-
Articulata
-
Rhynchonellida
-
Rhynchonellidae (1)
-
-
-
-
Mollusca
-
Bivalvia (1)
-
Gastropoda
-
Neogastropoda (1)
-
-
-
Protista
-
Radiolaria (1)
-
-
-
microfossils (4)
-
palynomorphs
-
miospores (2)
-
-
Plantae
-
algae
-
diatoms
-
Melosira (1)
-
-
-
-
thallophytes (1)
-
-
geochronology methods
-
Ar/Ar (2)
-
K/Ar (1)
-
paleomagnetism (3)
-
racemization (2)
-
-
geologic age
-
Cenozoic
-
Quaternary
-
Holocene
-
upper Holocene (1)
-
-
Pleistocene
-
upper Pleistocene (4)
-
-
upper Quaternary (2)
-
-
Tertiary
-
Neogene
-
Pliocene (2)
-
-
Paleogene
-
Eocene
-
lower Eocene (1)
-
-
Paleocene (1)
-
Santa Susana Formation (1)
-
-
-
upper Cenozoic (1)
-
-
Mesozoic
-
Cretaceous
-
Alisitos Formation (1)
-
Lower Cretaceous
-
Albian (1)
-
Hauterivian (2)
-
Neocomian (1)
-
-
Upper Cretaceous
-
Campanian (1)
-
Cenomanian (1)
-
Ladd Formation (1)
-
Maestrichtian (2)
-
Point Loma Formation (1)
-
Rosario Formation (1)
-
Senonian (2)
-
Turonian (1)
-
-
-
Franciscan Complex (12)
-
Great Valley Sequence (6)
-
Jurassic
-
Coast Range Ophiolite (5)
-
Lower Jurassic
-
middle Liassic (1)
-
Pliensbachian (1)
-
-
Middle Jurassic
-
Bathonian (1)
-
-
Upper Jurassic
-
Oxfordian (1)
-
Portlandian (1)
-
Tithonian (1)
-
-
-
-
-
igneous rocks
-
igneous rocks
-
plutonic rocks
-
diabase (1)
-
granites
-
rapakivi (1)
-
-
ultramafics
-
peridotites
-
harzburgite (1)
-
-
-
-
volcanic rocks
-
andesites (1)
-
basalts
-
mid-ocean ridge basalts (1)
-
tholeiitic basalt (2)
-
-
dacites (3)
-
glasses
-
volcanic glass (1)
-
-
pyroclastics
-
hyaloclastite (1)
-
-
rhyolites (1)
-
-
-
ophiolite (4)
-
-
metamorphic rocks
-
metamorphic rocks
-
amphibolites (1)
-
metaigneous rocks
-
metabasalt (1)
-
serpentinite (4)
-
-
metasomatic rocks
-
serpentinite (4)
-
-
metavolcanic rocks (1)
-
schists
-
blueschist (2)
-
-
-
ophiolite (4)
-
-
minerals
-
minerals (3)
-
oxides
-
chrome spinel (1)
-
-
silicates
-
chain silicates
-
amphibole group
-
clinoamphibole
-
hornblende (1)
-
-
-
pyroxene group
-
clinopyroxene
-
augite (1)
-
omphacite (1)
-
-
-
-
framework silicates
-
feldspar group
-
alkali feldspar
-
sanidine (2)
-
-
plagioclase (1)
-
-
silica minerals
-
quartz (1)
-
-
zeolite group
-
wairakite (1)
-
-
-
sheet silicates
-
serpentine group
-
serpentine (1)
-
-
-
-
sulfates
-
alunite (1)
-
-
sulfides
-
cinnabar (1)
-
metastibnite (1)
-
-
-
Primary terms
-
absolute age (4)
-
Asia
-
Far East
-
China
-
Xizang China (1)
-
-
-
-
biogeography (1)
-
carbon
-
C-13/C-12 (1)
-
C-14 (1)
-
-
Cenozoic
-
Quaternary
-
Holocene
-
upper Holocene (1)
-
-
Pleistocene
-
upper Pleistocene (4)
-
-
upper Quaternary (2)
-
-
Tertiary
-
Neogene
-
Pliocene (2)
-
-
Paleogene
-
Eocene
-
lower Eocene (1)
-
-
Paleocene (1)
-
Santa Susana Formation (1)
-
-
-
upper Cenozoic (1)
-
-
Chordata
-
Vertebrata
-
Pisces (2)
-
-
-
crust (6)
-
crystal chemistry (3)
-
crystal growth (4)
-
data processing (1)
-
deformation (1)
-
diagenesis (2)
-
earthquakes (22)
-
economic geology (10)
-
environmental geology (1)
-
Europe
-
Central Europe
-
Switzerland
-
Basel Switzerland (1)
-
-
-
Southern Europe
-
Italy
-
Campania Italy
-
Phlegraean Fields (1)
-
-
-
-
Western Europe
-
France
-
Bas-Rhin France
-
Soultz-sous-Forets France (1)
-
-
-
Iceland (1)
-
Netherlands (1)
-
-
-
explosions (2)
-
faults (13)
-
folds (1)
-
fractures (1)
-
geochemistry (11)
-
geochronology (4)
-
geodesy (1)
-
geophysical methods (8)
-
geothermal energy (17)
-
ground water (2)
-
heat flow (1)
-
hydrogen
-
D/H (2)
-
-
hydrogeology (1)
-
hydrology (1)
-
igneous rocks
-
plutonic rocks
-
diabase (1)
-
granites
-
rapakivi (1)
-
-
ultramafics
-
peridotites
-
harzburgite (1)
-
-
-
-
volcanic rocks
-
andesites (1)
-
basalts
-
mid-ocean ridge basalts (1)
-
tholeiitic basalt (2)
-
-
dacites (3)
-
glasses
-
volcanic glass (1)
-
-
pyroclastics
-
hyaloclastite (1)
-
-
rhyolites (1)
-
-
-
inclusions
-
fluid inclusions (2)
-
-
intrusions (2)
-
Invertebrata
-
Arthropoda
-
Mandibulata
-
Crustacea
-
Ostracoda (1)
-
-
-
-
Brachiopoda
-
Articulata
-
Rhynchonellida
-
Rhynchonellidae (1)
-
-
-
-
Mollusca
-
Bivalvia (1)
-
Gastropoda
-
Neogastropoda (1)
-
-
-
Protista
-
Radiolaria (1)
-
-
-
isotopes
-
radioactive isotopes
-
C-14 (1)
-
Pb-206/Pb-204 (2)
-
Pb-207/Pb-204 (2)
-
Pb-208/Pb-204 (2)
-
-
stable isotopes
-
C-13/C-12 (1)
-
D/H (2)
-
Hf-177/Hf-176 (1)
-
O-18/O-16 (4)
-
Pb-206/Pb-204 (2)
-
Pb-207/Pb-204 (2)
-
Pb-208/Pb-204 (2)
-
S-34/S-32 (1)
-
Sr-87/Sr-86 (1)
-
-
-
lava (5)
-
magmas (4)
-
mantle (3)
-
Mesozoic
-
Cretaceous
-
Alisitos Formation (1)
-
Lower Cretaceous
-
Albian (1)
-
Hauterivian (2)
-
Neocomian (1)
-
-
Upper Cretaceous
-
Campanian (1)
-
Cenomanian (1)
-
Ladd Formation (1)
-
Maestrichtian (2)
-
Point Loma Formation (1)
-
Rosario Formation (1)
-
Senonian (2)
-
Turonian (1)
-
-
-
Franciscan Complex (12)
-
Great Valley Sequence (6)
-
Jurassic
-
Coast Range Ophiolite (5)
-
Lower Jurassic
-
middle Liassic (1)
-
Pliensbachian (1)
-
-
Middle Jurassic
-
Bathonian (1)
-
-
Upper Jurassic
-
Oxfordian (1)
-
Portlandian (1)
-
Tithonian (1)
-
-
-
-
metal ores
-
base metals (1)
-
gold ores (5)
-
mercury ores (6)
-
silver ores (1)
-
-
metals
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (1)
-
-
-
hafnium
-
Hf-177/Hf-176 (1)
-
-
lead
-
Pb-206/Pb-204 (2)
-
Pb-207/Pb-204 (2)
-
Pb-208/Pb-204 (2)
-
-
mercury (2)
-
rare earths (3)
-
-
metamorphic rocks
-
amphibolites (1)
-
metaigneous rocks
-
metabasalt (1)
-
serpentinite (4)
-
-
metasomatic rocks
-
serpentinite (4)
-
-
metavolcanic rocks (1)
-
schists
-
blueschist (2)
-
-
-
metasomatism (5)
-
Mexico
-
Baja California (2)
-
-
mineral deposits, genesis (5)
-
mineralogy (6)
-
minerals (3)
-
mining geology (1)
-
Mohorovicic discontinuity (1)
-
North America (1)
-
ocean floors (1)
-
oxygen
-
O-18/O-16 (4)
-
-
Pacific Coast (1)
-
Pacific Ocean
-
East Pacific
-
Northeast Pacific (1)
-
-
North Pacific
-
Northeast Pacific (1)
-
-
-
paleoclimatology (5)
-
paleoecology (1)
-
paleogeography (3)
-
paleomagnetism (3)
-
paleontology (1)
-
palynomorphs
-
miospores (2)
-
-
paragenesis (1)
-
petrology (2)
-
phase equilibria (2)
-
Plantae
-
algae
-
diatoms
-
Melosira (1)
-
-
-
-
plate tectonics (5)
-
pollution (2)
-
sedimentary rocks
-
carbonate rocks
-
limestone
-
micrite (1)
-
-
-
chemically precipitated rocks
-
chert (1)
-
-
clastic rocks
-
conglomerate (1)
-
graywacke (2)
-
sandstone (1)
-
-
-
sedimentary structures
-
soft sediment deformation
-
olistostromes (2)
-
-
-
sedimentation (9)
-
sediments
-
clastic sediments
-
alluvium (1)
-
mud (1)
-
-
marine sediments (1)
-
peat (1)
-
-
seismology (9)
-
spectroscopy (2)
-
springs (4)
-
stratigraphy (7)
-
structural geology (4)
-
sulfur
-
S-34/S-32 (1)
-
-
symposia (2)
-
tectonics
-
neotectonics (3)
-
-
tectonophysics (1)
-
thallophytes (1)
-
thermal waters (5)
-
United States
-
California
-
Central California (7)
-
Colusa County California (4)
-
Contra Costa County California (2)
-
Fresno County California (1)
-
Glenn County California (4)
-
Humboldt County California (1)
-
Lake County California (33)
-
Los Angeles County California (2)
-
Marin County California (1)
-
Mendocino County California (3)
-
Napa County California (5)
-
Northern California (24)
-
Orange County California (1)
-
Salinian Block (1)
-
San Benito County California (1)
-
San Diego County California (1)
-
Santa Ana Mountains (1)
-
Santa Clara County California (1)
-
Santa Cruz County California (1)
-
Shasta County California (1)
-
Solano County California (1)
-
Sonoma County California
-
Santa Rosa California (1)
-
-
Tehama County California (2)
-
The Geysers (42)
-
Trinity County California (1)
-
Ventura County California
-
Simi Hills (1)
-
-
-
Columbia Plateau (1)
-
Louisiana (1)
-
Nevada (1)
-
Oregon (1)
-
Utah (1)
-
Washington (1)
-
Western U.S. (1)
-
Wyoming (1)
-
-
-
sedimentary rocks
-
sedimentary rocks
-
carbonate rocks
-
limestone
-
micrite (1)
-
-
-
chemically precipitated rocks
-
chert (1)
-
-
clastic rocks
-
conglomerate (1)
-
graywacke (2)
-
sandstone (1)
-
-
-
-
sedimentary structures
-
sedimentary structures
-
soft sediment deformation
-
olistostromes (2)
-
-
-
-
sediments
-
sediments
-
clastic sediments
-
alluvium (1)
-
mud (1)
-
-
marine sediments (1)
-
peat (1)
-
-
Induced earthquake potential in geothermal reservoirs: Insights from The Geysers, California
Sensitivity and Stability Analysis of Coda Quality Factors at The Geysers Geothermal Field, California
Forearc strike-slip displacement as an alternative to subduction erosion, with examples from Mexico and California (sinistral Nacimiento fault)
Update, Comparison, and Interpretation of the Ground‐Motion Prediction Equation for “The Geysers” Geothermal Area in the Light of New Data
HiQuake : The Human‐Induced Earthquake Database
Constraints on the Near‐Distance Saturation of Ground‐Motion Amplitudes for Small‐to‐Moderate Induced Earthquakes
A Fault‐Based Model for Crustal Deformation, Fault Slip Rates, and Off‐Fault Strain Rate in California
Source-Type-Specific Inversion of Moment Tensors
A Systematic Analysis of Seismic Moment Tensor at The Geysers Geothermal Field, California
The Stress State of the Northwest Geysers, California Geothermal Field, and Implications for Fault‐Controlled Fluid Flow
Predicting Ground Motion from Induced Earthquakes in Geothermal Areas
Ground‐Motion Prediction Equations for The Geysers Geothermal Area based on Induced Seismicity Records
From Induced Seismicity to Direct Time‐Dependent Seismic Hazard
Site Resonance from Strong Ground Motions at Lucerne, California, during the 1992 Landers Mainshock
Serpentinite matrix mélange represents a significant, if less common, component of many accretionary complexes. There are two principal hypotheses for the origin of serpentinite mélange: (1) formation on the seafloor in a fracture zone–transform fault setting, and (2) formation within a subduction zone with mixing of rocks derived from both the upper and lower plates. The first hypothesis requires that the sheared serpentinite matrix be derived from hydrated abyssal peridotites and that the block assemblage consist exclusively of oceanic rocks (abyssal peridotites, oceanic basalts, and pelagic sediments). The second hypothesis implies that the sheared serpentinite matrix is derived from hydrated refractory peridotites with supra-subduction zone affinities, and that the block assemblage includes rocks derived from both the upper plate (forearc peridotites, arc volcanics, sediments) and the lower plate (abyssal peridotites, oceanic basalts, pelagic sediments). In either case, serpentinite mélange may include true mélange, with exotic blocks derived from other sources, and serpentinite broken formation , where the blocks are massive peridotite. The Tehama-Colusa serpentinite mélange underlies the Coast Range ophiolite in northern California and separates it from high-pressure/temperature (P/T) metamorphic rocks of the Franciscan complex. It has been interpreted both as an accreted fracture zone terrane and as a subduction-derived mélange belt. Our data show that the mélange matrix represents hydrated refractory peridotites with forearc affinities, and that blocks within the mélange consist largely of upper plate lithologies (refractory forearc harzburgite, arc volcanics, arc-derived sediments, and chert with Coast Range ophiolite biostratigraphy). Lower plate blocks within the mélange include oceanic basalts and chert with rare blueschist and amphibolite. Hornblendes from three amphibolite blocks that crop out in serpentinite mélange and sedimentary serpentinite yield 40 Ar/ 39 Ar plateau ages of 165.6–167.5 Ma, similar to published ages of high-grade blocks within the Franciscan complex and to crystallization ages in the Coast Range ophiolite. Other blocks have uncertain provenance. It has been shown that peridotite blocks within the mélange have low pyroxene equilibration temperatures that are consistent with formation in a fracture zone setting. However, the current mélange reflects largely upper-plate lithologies in both its matrix and its constituent blocks. We propose that the proto-Franciscan subduction zone nucleated on a large offset transform fault–fracture zone that evolved into a subduction zone mélange complex. Mélange matrix was formed by the hydration and volume expansion of refractory forearc peridotite, followed by subsequent shear deformation. Mélange blocks were formed largely by the breakup of upper plate crust and lithosphere, with minor offscraping and incorporation of lower plate crust. We propose that the methods discussed here can be applied to serpentinite matrix mélange worldwide in order to understand better the tectonic evolution of the orogens in which they occur.