- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Burro Mountain (1)
-
Coast Ranges (5)
-
North America (1)
-
Pacific Ocean
-
East Pacific
-
Northeast Pacific
-
Gorda Rise (1)
-
Mendocino fracture zone (2)
-
-
-
North Pacific
-
Northeast Pacific
-
Gorda Rise (1)
-
Mendocino fracture zone (2)
-
-
-
-
Round Mountain (1)
-
Sacramento Valley (2)
-
Salt Creek (1)
-
Sierra Nevada (1)
-
United States
-
California
-
Butte County California (2)
-
Colusa County California (3)
-
Glenn County California (5)
-
Humboldt County California (1)
-
Lake County California (1)
-
Mendocino County California (3)
-
Monterey County California (1)
-
Northern California (9)
-
Santa Barbara County California
-
Point Sal (1)
-
-
Shasta County California (2)
-
Siskiyou County California (1)
-
Tehama County California (11)
-
Trinity County California (3)
-
Yolla Bolly Terrane (1)
-
-
Klamath Mountains (3)
-
Oregon (1)
-
-
-
elements, isotopes
-
isotope ratios (1)
-
isotopes
-
radioactive isotopes
-
Re-187/Os-188 (1)
-
-
stable isotopes
-
Os-188/Os-187 (1)
-
Re-187/Os-188 (1)
-
-
-
metals
-
alkaline earth metals
-
calcium (1)
-
magnesium (1)
-
-
platinum group
-
iridium (1)
-
osmium
-
Os-188/Os-187 (1)
-
Re-187/Os-188 (1)
-
-
palladium (1)
-
platinum (1)
-
ruthenium (1)
-
-
rare earths (1)
-
rhenium
-
Re-187/Os-188 (1)
-
-
-
oxygen (1)
-
-
fossils
-
Invertebrata
-
Mollusca
-
Bivalvia (1)
-
Cephalopoda
-
Ammonoidea (1)
-
-
-
Protista
-
Foraminifera (1)
-
Radiolaria (3)
-
-
-
microfossils (4)
-
Plantae
-
algae
-
nannofossils (1)
-
-
-
-
geochronology methods
-
Ar/Ar (1)
-
paleomagnetism (1)
-
Pb/Pb (1)
-
Re/Os (1)
-
-
geologic age
-
Cenozoic
-
Tertiary
-
Paleogene
-
Eocene (1)
-
Oligocene (1)
-
-
-
-
Mesozoic
-
Cretaceous
-
Lower Cretaceous
-
Albian (1)
-
-
Middle Cretaceous (1)
-
Upper Cretaceous
-
Campanian (1)
-
Cenomanian (1)
-
Hornbrook Formation (2)
-
Santonian (1)
-
Senonian (1)
-
-
-
Franciscan Complex (6)
-
Great Valley Sequence (2)
-
Jurassic
-
Coast Range Ophiolite (3)
-
Lower Jurassic (1)
-
Middle Jurassic (2)
-
Upper Jurassic
-
Galice Formation (1)
-
Portlandian (1)
-
Tithonian (1)
-
-
-
-
-
igneous rocks
-
igneous rocks
-
plutonic rocks
-
diabase (1)
-
gabbros (1)
-
ultramafics
-
chromitite (1)
-
peridotites
-
harzburgite (1)
-
-
-
-
volcanic rocks
-
andesites
-
boninite (1)
-
-
basalts (2)
-
-
-
-
metamorphic rocks
-
metamorphic rocks
-
amphibolites (1)
-
metaigneous rocks
-
metaperidotite (1)
-
serpentinite (2)
-
-
metasedimentary rocks
-
metagraywacke (1)
-
-
metasomatic rocks
-
serpentinite (2)
-
-
metavolcanic rocks (1)
-
schists
-
blueschist (1)
-
-
-
-
minerals
-
oxides
-
chrome spinel (1)
-
-
silicates
-
chain silicates
-
amphibole group
-
clinoamphibole
-
hornblende (1)
-
-
-
pyroxene group
-
clinopyroxene
-
jadeite (1)
-
-
-
-
framework silicates
-
feldspar group
-
plagioclase
-
albite (1)
-
-
-
-
orthosilicates
-
nesosilicates
-
zircon group
-
zircon (1)
-
-
-
sorosilicates
-
lawsonite (1)
-
-
-
sheet silicates
-
mica group
-
phengite (1)
-
-
-
-
-
Primary terms
-
absolute age (2)
-
Cenozoic
-
Tertiary
-
Paleogene
-
Eocene (1)
-
Oligocene (1)
-
-
-
-
crust (2)
-
data processing (1)
-
deformation (1)
-
faults (7)
-
folds (1)
-
foliation (2)
-
geochemistry (1)
-
geophysical methods (2)
-
igneous rocks
-
plutonic rocks
-
diabase (1)
-
gabbros (1)
-
ultramafics
-
chromitite (1)
-
peridotites
-
harzburgite (1)
-
-
-
-
volcanic rocks
-
andesites
-
boninite (1)
-
-
basalts (2)
-
-
-
Invertebrata
-
Mollusca
-
Bivalvia (1)
-
Cephalopoda
-
Ammonoidea (1)
-
-
-
Protista
-
Foraminifera (1)
-
Radiolaria (3)
-
-
-
isotopes
-
radioactive isotopes
-
Re-187/Os-188 (1)
-
-
stable isotopes
-
Os-188/Os-187 (1)
-
Re-187/Os-188 (1)
-
-
-
lava (1)
-
magmas (1)
-
mantle (4)
-
Mesozoic
-
Cretaceous
-
Lower Cretaceous
-
Albian (1)
-
-
Middle Cretaceous (1)
-
Upper Cretaceous
-
Campanian (1)
-
Cenomanian (1)
-
Hornbrook Formation (2)
-
Santonian (1)
-
Senonian (1)
-
-
-
Franciscan Complex (6)
-
Great Valley Sequence (2)
-
Jurassic
-
Coast Range Ophiolite (3)
-
Lower Jurassic (1)
-
Middle Jurassic (2)
-
Upper Jurassic
-
Galice Formation (1)
-
Portlandian (1)
-
Tithonian (1)
-
-
-
-
metals
-
alkaline earth metals
-
calcium (1)
-
magnesium (1)
-
-
platinum group
-
iridium (1)
-
osmium
-
Os-188/Os-187 (1)
-
Re-187/Os-188 (1)
-
-
palladium (1)
-
platinum (1)
-
ruthenium (1)
-
-
rare earths (1)
-
rhenium
-
Re-187/Os-188 (1)
-
-
-
metamorphic rocks
-
amphibolites (1)
-
metaigneous rocks
-
metaperidotite (1)
-
serpentinite (2)
-
-
metasedimentary rocks
-
metagraywacke (1)
-
-
metasomatic rocks
-
serpentinite (2)
-
-
metavolcanic rocks (1)
-
schists
-
blueschist (1)
-
-
-
metamorphism (3)
-
metasomatism (1)
-
North America (1)
-
ocean floors (1)
-
oxygen (1)
-
Pacific Ocean
-
East Pacific
-
Northeast Pacific
-
Gorda Rise (1)
-
Mendocino fracture zone (2)
-
-
-
North Pacific
-
Northeast Pacific
-
Gorda Rise (1)
-
Mendocino fracture zone (2)
-
-
-
-
paleogeography (1)
-
paleomagnetism (1)
-
petrology (1)
-
Plantae
-
algae
-
nannofossils (1)
-
-
-
plate tectonics (8)
-
sedimentary rocks
-
clastic rocks
-
sandstone (1)
-
-
-
sedimentation (2)
-
sediments
-
marine sediments (1)
-
-
stratigraphy (1)
-
structural analysis (3)
-
structural geology (1)
-
tectonics (4)
-
tectonophysics (1)
-
United States
-
California
-
Butte County California (2)
-
Colusa County California (3)
-
Glenn County California (5)
-
Humboldt County California (1)
-
Lake County California (1)
-
Mendocino County California (3)
-
Monterey County California (1)
-
Northern California (9)
-
Santa Barbara County California
-
Point Sal (1)
-
-
Shasta County California (2)
-
Siskiyou County California (1)
-
Tehama County California (11)
-
Trinity County California (3)
-
Yolla Bolly Terrane (1)
-
-
Klamath Mountains (3)
-
Oregon (1)
-
-
-
sedimentary rocks
-
sedimentary rocks
-
clastic rocks
-
sandstone (1)
-
-
-
-
sediments
-
sediments
-
marine sediments (1)
-
-
Mantle structure, anisotropy, and dynamics of the Mendocino Triple Junction, northern California, USA
Re−Os Isotope and PGE Abundance Systematics of Coast Range Ophiolite Peridotites and Chromitite, California: Insights into Fore-Arc Magmatic Processes
Metamorphic Temperatures and Pressures across the Eastern Franciscan: Implications for Underplating and Exhumation
Subduction, accretion, and exhumation of coherent Franciscan blueschist-facies rocks, northern Coast Ranges, California
Earliest Cretaceous Pacificward offset of the Klamath Mountains salient, NW California–SW Oregon
Serpentinite matrix mélange represents a significant, if less common, component of many accretionary complexes. There are two principal hypotheses for the origin of serpentinite mélange: (1) formation on the seafloor in a fracture zone–transform fault setting, and (2) formation within a subduction zone with mixing of rocks derived from both the upper and lower plates. The first hypothesis requires that the sheared serpentinite matrix be derived from hydrated abyssal peridotites and that the block assemblage consist exclusively of oceanic rocks (abyssal peridotites, oceanic basalts, and pelagic sediments). The second hypothesis implies that the sheared serpentinite matrix is derived from hydrated refractory peridotites with supra-subduction zone affinities, and that the block assemblage includes rocks derived from both the upper plate (forearc peridotites, arc volcanics, sediments) and the lower plate (abyssal peridotites, oceanic basalts, pelagic sediments). In either case, serpentinite mélange may include true mélange, with exotic blocks derived from other sources, and serpentinite broken formation , where the blocks are massive peridotite. The Tehama-Colusa serpentinite mélange underlies the Coast Range ophiolite in northern California and separates it from high-pressure/temperature (P/T) metamorphic rocks of the Franciscan complex. It has been interpreted both as an accreted fracture zone terrane and as a subduction-derived mélange belt. Our data show that the mélange matrix represents hydrated refractory peridotites with forearc affinities, and that blocks within the mélange consist largely of upper plate lithologies (refractory forearc harzburgite, arc volcanics, arc-derived sediments, and chert with Coast Range ophiolite biostratigraphy). Lower plate blocks within the mélange include oceanic basalts and chert with rare blueschist and amphibolite. Hornblendes from three amphibolite blocks that crop out in serpentinite mélange and sedimentary serpentinite yield 40 Ar/ 39 Ar plateau ages of 165.6–167.5 Ma, similar to published ages of high-grade blocks within the Franciscan complex and to crystallization ages in the Coast Range ophiolite. Other blocks have uncertain provenance. It has been shown that peridotite blocks within the mélange have low pyroxene equilibration temperatures that are consistent with formation in a fracture zone setting. However, the current mélange reflects largely upper-plate lithologies in both its matrix and its constituent blocks. We propose that the proto-Franciscan subduction zone nucleated on a large offset transform fault–fracture zone that evolved into a subduction zone mélange complex. Mélange matrix was formed by the hydration and volume expansion of refractory forearc peridotite, followed by subsequent shear deformation. Mélange blocks were formed largely by the breakup of upper plate crust and lithosphere, with minor offscraping and incorporation of lower plate crust. We propose that the methods discussed here can be applied to serpentinite matrix mélange worldwide in order to understand better the tectonic evolution of the orogens in which they occur.