Update search
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
Format
Article Type
Journal
Publisher
Section
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Atlantic Ocean
-
North Atlantic
-
Gulf of Mexico (1)
-
-
-
Bald Mountain (3)
-
Black Hills (3)
-
Black Mountain (1)
-
Canada
-
Eastern Canada
-
Newfoundland and Labrador
-
Newfoundland
-
Burin Peninsula (1)
-
-
-
-
-
Casper Mountain (2)
-
Clear Creek (1)
-
Europe
-
Western Europe
-
United Kingdom
-
Great Britain
-
Scotland
-
Hebrides
-
Inner Hebrides
-
Isle of Skye (1)
-
-
-
Highland region Scotland
-
Inverness-shire Scotland
-
Isle of Skye (1)
-
-
-
-
-
-
-
-
Front Range (1)
-
Granite Mountains (1)
-
Green River basin (1)
-
North America
-
Rocky Mountains
-
U. S. Rocky Mountains
-
Absaroka Range
-
Beartooth Mountains (2)
-
-
Bighorn Mountains (64)
-
Laramie Mountains (3)
-
Owl Creek Mountains (3)
-
Wind River Range (3)
-
-
-
Rocky Mountains foreland (3)
-
Western Interior (1)
-
-
Rattlesnake Mountain (1)
-
United States
-
Bighorn Basin (18)
-
Bighorn River (1)
-
California
-
Los Angeles County California
-
Los Angeles California (1)
-
-
Southern California (1)
-
Transverse Ranges (1)
-
-
Cincinnati Arch (1)
-
Clark's Fork Basin (1)
-
Colorado (2)
-
Montana
-
Big Horn County Montana (1)
-
Carbon County Montana (1)
-
-
Moxa Arch (1)
-
New England (1)
-
Powder River basin (1)
-
Sevier orogenic belt (1)
-
South Dakota (2)
-
U. S. Rocky Mountains
-
Absaroka Range
-
Beartooth Mountains (2)
-
-
Bighorn Mountains (64)
-
Laramie Mountains (3)
-
Owl Creek Mountains (3)
-
Wind River Range (3)
-
-
Vermont (1)
-
Wyoming
-
Big Horn County Wyoming (28)
-
Fremont County Wyoming (2)
-
Hot Springs County Wyoming (2)
-
Johnson County Wyoming (6)
-
Owl Creek Mountains (3)
-
Park County Wyoming (4)
-
Rock Springs Uplift (1)
-
Sheridan County Wyoming (8)
-
Sublette County Wyoming
-
Pinedale Anticline (1)
-
-
Washakie County Wyoming (8)
-
Wind River Range (3)
-
-
Wyoming Province (3)
-
-
-
commodities
-
gems (1)
-
oil and gas fields (2)
-
petroleum (3)
-
-
elements, isotopes
-
carbon
-
C-13/C-12 (1)
-
-
isotope ratios (4)
-
isotopes
-
radioactive isotopes
-
Pb-206/Pb-204 (1)
-
Pb-207/Pb-204 (1)
-
Pb-208/Pb-204 (1)
-
-
stable isotopes
-
C-13/C-12 (1)
-
N-15/N-14 (1)
-
Nd-144/Nd-143 (1)
-
O-18/O-16 (1)
-
Pb-206/Pb-204 (1)
-
Pb-207/Pb-204 (1)
-
Pb-208/Pb-204 (1)
-
Sr-87/Sr-86 (2)
-
-
-
metals
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (2)
-
-
-
iron (1)
-
lead
-
Pb-206/Pb-204 (1)
-
Pb-207/Pb-204 (1)
-
Pb-208/Pb-204 (1)
-
-
rare earths
-
neodymium
-
Nd-144/Nd-143 (1)
-
-
-
-
nitrogen
-
N-15/N-14 (1)
-
-
noble gases
-
helium (2)
-
-
oxygen
-
O-18/O-16 (1)
-
-
sulfur (2)
-
-
fossils
-
bacteria (1)
-
Chordata
-
Vertebrata
-
Tetrapoda
-
Mammalia
-
Theria
-
Eutheria
-
Artiodactyla
-
Ruminantia
-
Bovidae
-
Bos (1)
-
-
-
-
Creodonta (1)
-
Rodentia (1)
-
-
-
-
Reptilia
-
Diapsida
-
Archosauria
-
dinosaurs
-
Saurischia
-
Sauropodomorpha
-
Sauropoda (1)
-
-
-
-
-
Ichthyosauria (1)
-
Sauropterygia
-
Plesiosauria (1)
-
-
-
-
-
-
-
ichnofossils (3)
-
Invertebrata
-
Arthropoda
-
Chelicerata
-
Merostomata
-
Eurypterida (1)
-
-
-
Mandibulata
-
Crustacea
-
Branchiopoda (1)
-
-
-
Trilobitomorpha
-
Trilobita (1)
-
-
-
Brachiopoda (3)
-
Cnidaria
-
Hydrozoa (1)
-
-
Echinodermata
-
Crinozoa
-
Crinoidea (2)
-
-
-
Mollusca
-
Bivalvia (1)
-
-
Protista
-
Foraminifera
-
Fusulinina (1)
-
-
-
Vermes
-
Annelida (1)
-
-
-
microfossils
-
Conodonta (2)
-
Fusulinina (1)
-
-
palynomorphs (1)
-
Plantae (2)
-
tracks (4)
-
-
geochronology methods
-
(U-Th)/He (2)
-
Ar/Ar (1)
-
fission-track dating (1)
-
Rb/Sr (2)
-
Th/U (2)
-
thermochronology (2)
-
U/Pb (1)
-
-
geologic age
-
Cenozoic
-
Quaternary
-
Holocene (1)
-
Pleistocene (1)
-
-
Tertiary
-
Paleogene
-
Eocene
-
lower Eocene
-
Willwood Formation (6)
-
-
-
Paleocene
-
lower Paleocene
-
K-T boundary (1)
-
-
upper Paleocene
-
Tiffanian (1)
-
-
-
-
-
-
Mesozoic
-
Cretaceous
-
Lower Cretaceous
-
Cloverly Formation (1)
-
-
Upper Cretaceous
-
Hell Creek Formation (1)
-
K-T boundary (1)
-
Lance Formation (1)
-
Parkman Sandstone (1)
-
-
-
Jurassic
-
Middle Jurassic
-
Bajocian (1)
-
Bathonian (2)
-
-
Upper Jurassic
-
Morrison Formation (3)
-
Sundance Formation (4)
-
-
-
Triassic (1)
-
-
Paleozoic
-
Cambrian
-
Middle Cambrian
-
Flathead Sandstone (2)
-
-
-
Carboniferous
-
Amsden Formation (1)
-
Mississippian
-
Madison Group (4)
-
-
Pennsylvanian
-
Upper Pennsylvanian
-
Missourian (1)
-
-
-
-
Devonian
-
Lower Devonian
-
Pragian (1)
-
-
Upper Devonian
-
Jefferson Group (2)
-
-
-
lower Paleozoic (2)
-
Ordovician
-
Lower Ordovician (1)
-
Upper Ordovician
-
Ashgillian (1)
-
Bighorn Dolomite (4)
-
Cincinnatian
-
Maysvillian (1)
-
-
Hirnantian (1)
-
-
-
Permian
-
Phosphoria Formation (1)
-
-
Tensleep Sandstone (2)
-
-
Phanerozoic (1)
-
Precambrian
-
Archean
-
Neoarchean (1)
-
-
upper Precambrian
-
Proterozoic (1)
-
-
-
-
igneous rocks
-
igneous rocks
-
plutonic rocks
-
diabase
-
quartz diabase (1)
-
-
diorites
-
quartz diorites (2)
-
-
granites (1)
-
quartz monzonite (2)
-
ultramafics (1)
-
-
volcanic rocks
-
basalts
-
tholeiite (1)
-
-
-
-
-
metamorphic rocks
-
metamorphic rocks
-
amphibolites (2)
-
gneisses (7)
-
metaigneous rocks
-
metadiabase (6)
-
metapyroxenite (1)
-
-
metaplutonic rocks (1)
-
schists (1)
-
-
-
minerals
-
carbonates
-
calcite (1)
-
-
minerals (3)
-
oxides
-
iron oxides (1)
-
-
phosphates
-
apatite (2)
-
-
silicates
-
framework silicates
-
feldspar group
-
alkali feldspar
-
microcline (1)
-
-
plagioclase (2)
-
-
silica minerals
-
agate (1)
-
chalcedony (1)
-
quartz (1)
-
-
-
orthosilicates
-
nesosilicates
-
titanite group
-
titanite (1)
-
-
zircon group
-
zircon (3)
-
-
-
-
-
sulfates (1)
-
-
Primary terms
-
absolute age (6)
-
Atlantic Ocean
-
North Atlantic
-
Gulf of Mexico (1)
-
-
-
bacteria (1)
-
biogeography (3)
-
Canada
-
Eastern Canada
-
Newfoundland and Labrador
-
Newfoundland
-
Burin Peninsula (1)
-
-
-
-
-
carbon
-
C-13/C-12 (1)
-
-
Cenozoic
-
Quaternary
-
Holocene (1)
-
Pleistocene (1)
-
-
Tertiary
-
Paleogene
-
Eocene
-
lower Eocene
-
Willwood Formation (6)
-
-
-
Paleocene
-
lower Paleocene
-
K-T boundary (1)
-
-
upper Paleocene
-
Tiffanian (1)
-
-
-
-
-
-
chemical analysis (1)
-
Chordata
-
Vertebrata
-
Tetrapoda
-
Mammalia
-
Theria
-
Eutheria
-
Artiodactyla
-
Ruminantia
-
Bovidae
-
Bos (1)
-
-
-
-
Creodonta (1)
-
Rodentia (1)
-
-
-
-
Reptilia
-
Diapsida
-
Archosauria
-
dinosaurs
-
Saurischia
-
Sauropodomorpha
-
Sauropoda (1)
-
-
-
-
-
Ichthyosauria (1)
-
Sauropterygia
-
Plesiosauria (1)
-
-
-
-
-
-
-
climate change (1)
-
crust (3)
-
crystal chemistry (1)
-
crystal growth (2)
-
deformation (8)
-
diagenesis (3)
-
earthquakes (5)
-
ecology (1)
-
economic geology (2)
-
engineering geology (1)
-
Europe
-
Western Europe
-
United Kingdom
-
Great Britain
-
Scotland
-
Hebrides
-
Inner Hebrides
-
Isle of Skye (1)
-
-
-
Highland region Scotland
-
Inverness-shire Scotland
-
Isle of Skye (1)
-
-
-
-
-
-
-
-
explosions (3)
-
faults (19)
-
folds (13)
-
foliation (2)
-
fractures (5)
-
gems (1)
-
geochemistry (9)
-
geochronology (4)
-
geodesy (1)
-
geomorphology (2)
-
geophysical methods (2)
-
heat flow (1)
-
hydrogeology (1)
-
hydrology (2)
-
ichnofossils (3)
-
igneous rocks
-
plutonic rocks
-
diabase
-
quartz diabase (1)
-
-
diorites
-
quartz diorites (2)
-
-
granites (1)
-
quartz monzonite (2)
-
ultramafics (1)
-
-
volcanic rocks
-
basalts
-
tholeiite (1)
-
-
-
-
inclusions (2)
-
intrusions (9)
-
Invertebrata
-
Arthropoda
-
Chelicerata
-
Merostomata
-
Eurypterida (1)
-
-
-
Mandibulata
-
Crustacea
-
Branchiopoda (1)
-
-
-
Trilobitomorpha
-
Trilobita (1)
-
-
-
Brachiopoda (3)
-
Cnidaria
-
Hydrozoa (1)
-
-
Echinodermata
-
Crinozoa
-
Crinoidea (2)
-
-
-
Mollusca
-
Bivalvia (1)
-
-
Protista
-
Foraminifera
-
Fusulinina (1)
-
-
-
Vermes
-
Annelida (1)
-
-
-
isotopes
-
radioactive isotopes
-
Pb-206/Pb-204 (1)
-
Pb-207/Pb-204 (1)
-
Pb-208/Pb-204 (1)
-
-
stable isotopes
-
C-13/C-12 (1)
-
N-15/N-14 (1)
-
Nd-144/Nd-143 (1)
-
O-18/O-16 (1)
-
Pb-206/Pb-204 (1)
-
Pb-207/Pb-204 (1)
-
Pb-208/Pb-204 (1)
-
Sr-87/Sr-86 (2)
-
-
-
lineation (1)
-
magmas (1)
-
maps (3)
-
Mesozoic
-
Cretaceous
-
Lower Cretaceous
-
Cloverly Formation (1)
-
-
Upper Cretaceous
-
Hell Creek Formation (1)
-
K-T boundary (1)
-
Lance Formation (1)
-
Parkman Sandstone (1)
-
-
-
Jurassic
-
Middle Jurassic
-
Bajocian (1)
-
Bathonian (2)
-
-
Upper Jurassic
-
Morrison Formation (3)
-
Sundance Formation (4)
-
-
-
Triassic (1)
-
-
metals
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (2)
-
-
-
iron (1)
-
lead
-
Pb-206/Pb-204 (1)
-
Pb-207/Pb-204 (1)
-
Pb-208/Pb-204 (1)
-
-
rare earths
-
neodymium
-
Nd-144/Nd-143 (1)
-
-
-
-
metamorphic rocks
-
amphibolites (2)
-
gneisses (7)
-
metaigneous rocks
-
metadiabase (6)
-
metapyroxenite (1)
-
-
metaplutonic rocks (1)
-
schists (1)
-
-
metamorphism (4)
-
metasomatism (4)
-
mineralogy (5)
-
minerals (3)
-
nitrogen
-
N-15/N-14 (1)
-
-
noble gases
-
helium (2)
-
-
North America
-
Rocky Mountains
-
U. S. Rocky Mountains
-
Absaroka Range
-
Beartooth Mountains (2)
-
-
Bighorn Mountains (64)
-
Laramie Mountains (3)
-
Owl Creek Mountains (3)
-
Wind River Range (3)
-
-
-
Rocky Mountains foreland (3)
-
Western Interior (1)
-
-
oil and gas fields (2)
-
orogeny (4)
-
oxygen
-
O-18/O-16 (1)
-
-
paleoclimatology (4)
-
paleoecology (6)
-
paleogeography (4)
-
paleontology (7)
-
Paleozoic
-
Cambrian
-
Middle Cambrian
-
Flathead Sandstone (2)
-
-
-
Carboniferous
-
Amsden Formation (1)
-
Mississippian
-
Madison Group (4)
-
-
Pennsylvanian
-
Upper Pennsylvanian
-
Missourian (1)
-
-
-
-
Devonian
-
Lower Devonian
-
Pragian (1)
-
-
Upper Devonian
-
Jefferson Group (2)
-
-
-
lower Paleozoic (2)
-
Ordovician
-
Lower Ordovician (1)
-
Upper Ordovician
-
Ashgillian (1)
-
Bighorn Dolomite (4)
-
Cincinnatian
-
Maysvillian (1)
-
-
Hirnantian (1)
-
-
-
Permian
-
Phosphoria Formation (1)
-
-
Tensleep Sandstone (2)
-
-
palynomorphs (1)
-
petroleum (3)
-
petrology (11)
-
Phanerozoic (1)
-
Plantae (2)
-
Precambrian
-
Archean
-
Neoarchean (1)
-
-
upper Precambrian
-
Proterozoic (1)
-
-
-
remote sensing (3)
-
reservoirs (1)
-
rock mechanics (1)
-
sea-level changes (2)
-
sedimentary petrology (1)
-
sedimentary rocks
-
carbonate rocks
-
dolostone (1)
-
limestone (3)
-
-
clastic rocks
-
bentonite (1)
-
claystone (1)
-
conglomerate (2)
-
mudstone (1)
-
sandstone (1)
-
shale (2)
-
-
coal (2)
-
-
sedimentary structures
-
biogenic structures
-
algal structures
-
algal mats (1)
-
-
bioturbation (1)
-
lebensspuren (1)
-
-
-
sedimentation (8)
-
sediments
-
clastic sediments
-
gravel (1)
-
sand (1)
-
silt (1)
-
-
-
soils
-
Alluvial soils (1)
-
-
spectroscopy (1)
-
springs (1)
-
stratigraphy (8)
-
structural analysis (2)
-
structural geology (11)
-
sulfur (2)
-
tectonics (15)
-
United States
-
Bighorn Basin (18)
-
Bighorn River (1)
-
California
-
Los Angeles County California
-
Los Angeles California (1)
-
-
Southern California (1)
-
Transverse Ranges (1)
-
-
Cincinnati Arch (1)
-
Clark's Fork Basin (1)
-
Colorado (2)
-
Montana
-
Big Horn County Montana (1)
-
Carbon County Montana (1)
-
-
Moxa Arch (1)
-
New England (1)
-
Powder River basin (1)
-
Sevier orogenic belt (1)
-
South Dakota (2)
-
U. S. Rocky Mountains
-
Absaroka Range
-
Beartooth Mountains (2)
-
-
Bighorn Mountains (64)
-
Laramie Mountains (3)
-
Owl Creek Mountains (3)
-
Wind River Range (3)
-
-
Vermont (1)
-
Wyoming
-
Big Horn County Wyoming (28)
-
Fremont County Wyoming (2)
-
Hot Springs County Wyoming (2)
-
Johnson County Wyoming (6)
-
Owl Creek Mountains (3)
-
Park County Wyoming (4)
-
Rock Springs Uplift (1)
-
Sheridan County Wyoming (8)
-
Sublette County Wyoming
-
Pinedale Anticline (1)
-
-
Washakie County Wyoming (8)
-
Wind River Range (3)
-
-
Wyoming Province (3)
-
-
waterways (1)
-
-
rock formations
-
Chugwater Formation (1)
-
Fort Union Formation (4)
-
Goose Egg Formation (1)
-
-
sedimentary rocks
-
sedimentary rocks
-
carbonate rocks
-
dolostone (1)
-
limestone (3)
-
-
clastic rocks
-
bentonite (1)
-
claystone (1)
-
conglomerate (2)
-
mudstone (1)
-
sandstone (1)
-
shale (2)
-
-
coal (2)
-
-
-
sedimentary structures
-
sedimentary structures
-
biogenic structures
-
algal structures
-
algal mats (1)
-
-
bioturbation (1)
-
lebensspuren (1)
-
-
-
tracks (4)
-
-
sediments
-
sediments
-
clastic sediments
-
gravel (1)
-
sand (1)
-
silt (1)
-
-
-
-
soils
-
paleosols (3)
-
soils
-
Alluvial soils (1)
-
-
GeoRef Categories
Era and Period
Epoch and Age
Book Series
Date
Availability
New material of Lophiparamys debequensis from the Willwood Formation (early Eocene) of Wyoming, including the first postcrania of the genus
ABSTRACT We report the results of 167 calcite twinning strain analyses (131 limestones and 36 calcite veins, n = 7368 twin measurements) from the Teton–Gros Ventre (west; n = 21), Wind River ( n = 43), Beartooth ( n = 32), Bighorn ( n = 32), and Black Hills (east; n = 11) Laramide uplifts. Country rock limestones record only a layer-parallel shortening (LPS) strain fabric in many orientations across the region. Synorogenic veins record both vein-parallel shortening (VPS) and vein-normal shortening (VNS) fabrics in many orientations. Twinning strain overprints were not observed in the limestone or vein samples in the supracrustal sedimentary veneer (i.e., drape folds), thereby suggesting that the deformation and uplift of Archean crystalline rocks that form Laramide structures were dominated by offset on faults in the Archean crystalline basement and associated shortening in the midcrust. The twinning strains in the pre-Sevier Jurassic Sundance Formation, in the frontal Prospect thrust of the Sevier belt, and in the distal (eastern) foreland preserve an LPS oriented approximately E-W. This LPS fabric is rotated in unique orientations in Laramide uplifts, suggesting that all but the Bighorn Mountains were uplifted by oblique-slip faults. Detailed field and twinning strain studies of drape folds identified second-order complexities, including: layer-parallel slip through the fold axis (Clarks Fork anticline), attenuation of the sedimentary section and fold axis rotation (Rattlesnake Mountain), rotation of the fold axis and LPS fabric (Derby Dome), and vertical rotations of the LPS fabric about a horizontal axis with 35% attenuation of the sedimentary section (eastern Bighorns). Regional cross sections (E-W) across the Laramide province have an excess of sedimentary veneer rocks that balance with displacement on a detachment at 30 km depth and perhaps along the Moho discontinuity at 40 km depth. Crustal volumes in the Wyoming Province balance when deformation in the western hinterland is included.
Active‐Source Interferometry in Marine and Terrestrial Environments: Importance of Directionality and Stationary Phase
Rayleigh Wave Propagation in the Bighorn Mountains Region, Wyoming
Teleseismic P ‐Wave Coda Autocorrelation Imaging of Crustal and Basin Structure, Bighorn Mountains Region, Wyoming, U.S.A.
Testing a Local‐Distance R g / S g Discriminant Using Observations from the Bighorn Region, Wyoming
Using P / S Amplitude Ratios for Seismic Discrimination at Local Distances
Biotic invasion, niche stability, and the assembly of regional biotas in deep time: comparison between faunal provinces
THE OCCURRENCE OF VERTEBRATE AND INVERTEBRATE FOSSILS IN A SEQUENCE STRATIGRAPHIC CONTEXT: THE JURASSIC SUNDANCE FORMATION, BIGHORN BASIN, WYOMING, U.S.A
An Introduction to Low-temperature Thermochronologic Techniques, Methodology, and Applications
Abstract Low-temperature thermochronometers can be used to measure the timing and the rate at which rocks cool. Generally, rocks cool as they move towards Earth’s surface by erosion or normal faulting (tectonic exhumation of the footwall), or warm as they are buried by sediments and/or thrust sheets, or when they are intruded by magma and association hydrothermal fluids. Changes in heat flow or fluid flow can also cause heating or cooling. Apatite fision-track and apatite (U-Th)/He dating have low closure temperatures of ~120° C and ~70° C respectively, and are used to date cooling in the upper ~3–4 km (~1.8–2.4 mi) of Earth’s crust. Age-elevation relationships from samples collected from different elevations along vertical transects or from wellbores are used to calculate exhumation rates and the time of onset of rapid exhumation. The spatial distribution of cooling ages can be used to map faults in basement or intrusive rocks where faults can be difficult to recognize. Cooling ages from detrital minerals in sedimentary rocks can be used to constrain provenance. If sedimentary samples reached temperatures high enough to reset the thermochronometers, then ages may provide information on the cooling history of the basin. Forward thermal modeling can be used to test proposed thermal history models and predict thermochronometer ages. Inverse thermal modeling finds a best-fit thermal history that provides a good statistical match to measured thermochronometer ages. Both types of thermal modeling may help contrain maximum temperature of the sample and time spent at that temperature. Thermochronometer ages can be used as constraints in basin modeling. Maturation of kerogen to petroleum in a sedimentary basin is controlled by the maximum temperature reached by the kerogen and the amount of time it spends at or near that temperature (i.e., the thermal history of the basin). The timing of tectonics and the formation of structures in a region influence the generation, migration, entrapmet, and preservation of petroleum. Techniques such as low-temperature thermochronology that illuminate the relationship between time and tempearture during basin evolution can be valuable in understanding petroleum systems. These techniques are especially powerful when multiple dating techniques (such as apatite fission-track, zircon fission-track, and apatite (U-Th)/He dating) are applied to the same sample and when they are combined wiht other thermal indicators such as vitrinite reflectance data.
The Beaver Creek Detachment System: Syn-Laramide Gravity Detachment and Folding Oblique to Regional Compression
Abstract Detachment folds basinward of Laramide Rocky Mountain arches are relatively poorly known, partially due to coverage by synorogenic strata that may conceal undiscovered anticlinal fields. This study documents the geometry and kinematics of the Beaver Creek Detachment system (BCD), which is located west of a series of NW-trending thrust faults and folds defining the Beaver Creek reentrant on the western edge of the Bighorn Arch. Possible origins for this proposed detachment include syn-Laramide detachment rooted in mountain-front faulting, syn-Laramide gravity slinding during mountain-front folding, and post-Laramide gravity sliding.