Update search
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
Format
Article Type
Journal
Publisher
Section
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Africa
-
Central Africa
-
Congo Democratic Republic (1)
-
-
-
Asia
-
Middle East
-
Iran (1)
-
-
-
Australasia
-
Australia
-
South Australia
-
Olympic Dam Deposit (1)
-
-
-
New Zealand
-
Lake Taupo (1)
-
-
-
Chama Basin (4)
-
Colorado River basin (1)
-
Espanola Basin (23)
-
Europe
-
Central Europe
-
Germany
-
Saxony Germany (1)
-
-
-
Southern Europe
-
Iberian Peninsula
-
Portugal (1)
-
-
-
Western Europe
-
France (1)
-
Scandinavia
-
Sweden
-
Norrbotten Sweden
-
Kiruna Sweden (1)
-
-
-
-
United Kingdom
-
Great Britain
-
England
-
Cornwall England (1)
-
-
-
-
-
-
Mexico
-
Guanajuato Mexico (1)
-
-
North America
-
Basin and Range Province (1)
-
North American Cordillera (1)
-
Rio Grande Rift (30)
-
Rocky Mountains
-
Southern Rocky Mountains (5)
-
U. S. Rocky Mountains
-
San Juan Mountains (1)
-
Sangre de Cristo Mountains (7)
-
-
-
Western Interior (1)
-
-
North Island (1)
-
Pikes Peak (1)
-
Rio Grande (4)
-
Rio Grande Valley (1)
-
San Juan Basin (8)
-
San Luis Valley (1)
-
Santa Catalina Mountains (1)
-
Sinai (1)
-
South America
-
Argentina (1)
-
Peru (1)
-
-
United States
-
Albuquerque Basin (2)
-
Arizona
-
Petrified Forest National Park (1)
-
Pima County Arizona (1)
-
-
California
-
Inyo County California
-
Inyo Mountains (1)
-
-
Mono County California
-
Inyo Domes (1)
-
Obsidian Dome (1)
-
-
-
Colorado
-
Archuleta County Colorado (1)
-
Boulder County Colorado (1)
-
El Paso County Colorado (1)
-
La Plata County Colorado (1)
-
Mineral County Colorado
-
Creede mining district (1)
-
-
Montezuma County Colorado (1)
-
Montrose County Colorado (1)
-
Rio Grande County Colorado (1)
-
-
Colorado Plateau (7)
-
Montana
-
Carbon County Montana (1)
-
-
Nevada
-
Nevada Test Site (1)
-
Nye County Nevada
-
Yucca Mountain (2)
-
-
-
New Mexico
-
Animas Mountains (1)
-
Bernalillo County New Mexico (4)
-
Colfax County New Mexico (2)
-
Datil-Mogollon volcanic field (1)
-
Grants mineral belt (1)
-
Guadalupe County New Mexico (1)
-
Hidalgo County New Mexico (1)
-
Jemez Lineament (4)
-
Jemez Mountains (27)
-
Los Alamos County New Mexico
-
Los Alamos National Laboratory (31)
-
-
McKinley County New Mexico (1)
-
Mora County New Mexico (2)
-
Pajarito Plateau (22)
-
Picuris Range (7)
-
Rio Arriba County New Mexico
-
Ghost Ranch (2)
-
Nacimiento Mountains (4)
-
-
San Juan County New Mexico (1)
-
San Miguel County New Mexico (2)
-
Sandia Mountains (1)
-
Sandoval County New Mexico
-
Fenton Hill (3)
-
-
Santa Fe County New Mexico
-
Santa Fe New Mexico (5)
-
-
Taos County New Mexico
-
Questa Caldera (1)
-
-
Taos Plateau (1)
-
Tusas Mountains (5)
-
Valencia County New Mexico (1)
-
Valles Caldera (30)
-
-
Oklahoma
-
Cherokee County Oklahoma (1)
-
Wagoner County Oklahoma (1)
-
-
Texas
-
Archer County Texas (1)
-
Baylor County Texas (1)
-
Wichita County Texas (1)
-
-
U. S. Rocky Mountains
-
San Juan Mountains (1)
-
Sangre de Cristo Mountains (7)
-
-
Uncompahgre Uplift (2)
-
Utah
-
Carbon County Utah (1)
-
San Juan County Utah (1)
-
-
Western U.S. (2)
-
Wyoming
-
Big Horn County Wyoming (1)
-
-
Yavapai Province (1)
-
-
-
commodities
-
bitumens
-
asphalt (1)
-
-
brines (1)
-
gems (1)
-
geothermal energy (8)
-
metal ores
-
antimony ores (1)
-
base metals (1)
-
copper ores (3)
-
gold ores (3)
-
molybdenum ores (2)
-
polymetallic ores (1)
-
silver ores (3)
-
tungsten ores (1)
-
uranium ores (1)
-
-
mineral deposits, genesis (13)
-
mineral exploration (1)
-
petroleum
-
natural gas (3)
-
-
tight sands (1)
-
water resources (1)
-
-
elements, isotopes
-
carbon
-
C-13/C-12 (4)
-
C-14 (3)
-
organic carbon (1)
-
-
halogens
-
bromine
-
bromide ion (1)
-
-
chlorine
-
chloride ion (2)
-
-
fluorine (1)
-
-
hydrogen
-
D/H (4)
-
tritium (2)
-
-
isotope ratios (11)
-
isotopes
-
radioactive isotopes
-
Al-26 (1)
-
Be-10 (1)
-
C-14 (3)
-
Pb-206/Pb-204 (1)
-
Rb-87/Sr-86 (2)
-
tritium (2)
-
U-238/U-234 (1)
-
-
stable isotopes
-
C-13/C-12 (4)
-
D/H (4)
-
He-3 (1)
-
Nd-144/Nd-143 (1)
-
O-18/O-16 (8)
-
Pb-206/Pb-204 (1)
-
Rb-87/Sr-86 (2)
-
S-34/S-32 (1)
-
Sr-87/Sr-86 (5)
-
-
-
Lu/Hf (1)
-
metals
-
actinides
-
plutonium (1)
-
uranium
-
U-238/U-234 (1)
-
-
-
alkali metals
-
rubidium
-
Rb-87/Sr-86 (2)
-
-
-
alkaline earth metals
-
barium (1)
-
beryllium
-
Be-10 (1)
-
-
magnesium (1)
-
strontium
-
Rb-87/Sr-86 (2)
-
Sr-87/Sr-86 (5)
-
-
-
aluminum
-
Al-26 (1)
-
-
iron
-
ferric iron (4)
-
-
lead
-
Pb-206/Pb-204 (1)
-
-
manganese (2)
-
niobium (1)
-
precious metals (1)
-
rare earths
-
neodymium
-
Nd-144/Nd-143 (1)
-
-
-
titanium (3)
-
-
noble gases
-
helium
-
He-3 (1)
-
-
-
oxygen
-
O-18/O-16 (8)
-
-
silicon (1)
-
sulfur
-
S-34/S-32 (1)
-
-
-
fossils
-
Chordata
-
Vertebrata
-
Tetrapoda
-
Amphibia
-
Labyrinthodontia
-
Temnospondyli (1)
-
-
Lissamphibia (1)
-
-
Aves
-
Neornithes (1)
-
-
Mammalia
-
Theria
-
Eutheria
-
Artiodactyla
-
Ruminantia
-
Tylopoda
-
Camelidae (1)
-
-
-
-
Rodentia (1)
-
-
-
-
Reptilia
-
Anapsida
-
Testudines
-
Cryptodira (1)
-
-
-
Diapsida
-
Archosauria
-
dinosaurs
-
Saurischia
-
Theropoda (1)
-
-
-
-
Lepidosauria
-
Squamata
-
Serpentes (1)
-
-
-
-
Synapsida
-
Pelycosauria (3)
-
-
-
-
-
-
Invertebrata
-
Arthropoda
-
Mandibulata
-
Crustacea
-
Malacostraca (1)
-
-
-
-
Brachiopoda (1)
-
Cnidaria
-
Anthozoa
-
Zoantharia
-
Scleractinia (1)
-
-
-
-
Echinodermata
-
Echinozoa
-
Edrioasteroidea (1)
-
-
-
Protista
-
Foraminifera (1)
-
-
-
microfossils (2)
-
palynomorphs
-
miospores (1)
-
-
-
geochronology methods
-
(U-Th)/He (1)
-
Ar/Ar (8)
-
exposure age (1)
-
K/Ar (7)
-
Lu/Hf (1)
-
paleomagnetism (6)
-
Rb/Sr (2)
-
tephrochronology (3)
-
Th/U (3)
-
thermoluminescence (1)
-
U/Pb (2)
-
U/Th/Pb (1)
-
uranium disequilibrium (1)
-
-
geologic age
-
Cenozoic
-
Quaternary
-
Holocene
-
upper Holocene (1)
-
-
Pleistocene
-
Bandelier Tuff (25)
-
Bishop Tuff (2)
-
Illinoian (1)
-
lower Pleistocene (1)
-
upper Pleistocene (5)
-
-
upper Quaternary (1)
-
-
Sierra Ladrones Formation (1)
-
Tertiary
-
Neogene
-
Miocene
-
Barstovian (1)
-
lower Miocene
-
Hemingfordian (1)
-
-
middle Miocene (1)
-
Paintbrush Tuff (1)
-
Topopah Spring Member (1)
-
upper Miocene (3)
-
Zia Formation (3)
-
-
Pliocene (4)
-
Tesuque Formation (9)
-
upper Neogene (1)
-
-
Paleogene
-
Eocene
-
lower Eocene
-
Wasatchian (1)
-
-
-
Oligocene
-
upper Oligocene (1)
-
-
Paleocene
-
lower Paleocene
-
Torrejonian (1)
-
-
Nacimiento Formation (1)
-
-
-
-
upper Cenozoic (4)
-
-
Mesozoic
-
Cretaceous
-
Dakota Formation (2)
-
Lower Cretaceous
-
Burro Canyon Formation (1)
-
-
Mancos Shale (4)
-
Middle Cretaceous (1)
-
Upper Cretaceous
-
Carlile Shale (1)
-
Fruitland Formation (1)
-
Turonian (1)
-
-
-
Jurassic
-
Lower Jurassic
-
Triassic-Jurassic boundary (1)
-
-
Middle Jurassic
-
Todilto Formation (1)
-
-
Upper Jurassic
-
Morrison Formation (3)
-
-
-
Moenave Formation (1)
-
Triassic
-
Upper Triassic
-
Carnian (1)
-
Chinle Formation (4)
-
Norian (2)
-
Petrified Forest Member (4)
-
Redonda Formation (2)
-
Rhaetian (1)
-
Shinarump Member (1)
-
Triassic-Jurassic boundary (1)
-
-
-
-
Paleozoic
-
Carboniferous
-
Pennsylvanian
-
Lower Pennsylvanian
-
Morrowan (2)
-
-
Middle Pennsylvanian
-
Atokan
-
Atoka Formation (1)
-
-
-
Upper Pennsylvanian
-
Missourian (1)
-
-
-
-
Madera Formation (1)
-
Permian
-
Cutler Formation (7)
-
Lower Permian
-
Abo Formation (2)
-
Wichita Group (1)
-
Wolfcampian (1)
-
-
-
upper Paleozoic (2)
-
-
Phanerozoic (1)
-
Precambrian
-
upper Precambrian
-
Proterozoic
-
Mesoproterozoic (3)
-
Neoproterozoic (1)
-
Ortega Group (4)
-
Paleoproterozoic (3)
-
-
-
Vadito Group (1)
-
-
-
igneous rocks
-
igneous rocks
-
plutonic rocks
-
granites (2)
-
lamprophyres
-
spessartite (1)
-
-
pegmatite (1)
-
-
volcanic rocks
-
andesites (1)
-
basalts (4)
-
dacites (2)
-
glasses
-
obsidian (1)
-
volcanic glass (3)
-
-
pyroclastics
-
ash-flow tuff (3)
-
ignimbrite (6)
-
pumice (5)
-
rhyolite tuff (3)
-
tuff (15)
-
welded tuff (1)
-
-
quartz latite (1)
-
rhyolites (8)
-
-
-
-
metamorphic rocks
-
metamorphic rocks
-
metasedimentary rocks (7)
-
metavolcanic rocks (2)
-
quartzites (1)
-
schists (1)
-
-
-
minerals
-
carbonates
-
calcite (2)
-
dolomite (1)
-
witherite (1)
-
-
minerals (6)
-
oxides
-
hydroxides
-
oxyhydroxides (1)
-
-
magnetite (1)
-
-
phosphates
-
crandallite (1)
-
fluorapatite (1)
-
francolite (1)
-
goyazite (1)
-
turquoise (2)
-
variscite (1)
-
wavellite (1)
-
xenotime (1)
-
-
silicates
-
aluminosilicates (1)
-
chain silicates
-
amphibole group
-
clinoamphibole
-
hornblende (1)
-
-
-
pyroxene group
-
clinopyroxene (1)
-
-
-
framework silicates
-
feldspar group
-
alkali feldspar
-
adularia (1)
-
K-feldspar (1)
-
sanidine (2)
-
-
plagioclase (1)
-
-
silica minerals
-
quartz (5)
-
-
-
orthosilicates
-
nesosilicates
-
andalusite (1)
-
chloritoid (2)
-
garnet group (3)
-
kyanite (1)
-
olivine group
-
fayalite (1)
-
-
sillimanite (2)
-
staurolite (3)
-
zircon group
-
zircon (4)
-
-
-
-
sheet silicates
-
chlorite group
-
chlorite (1)
-
-
clay minerals
-
halloysite (1)
-
kaolinite (3)
-
montmorillonite (1)
-
smectite (2)
-
vermiculite (1)
-
-
illite (2)
-
mica group
-
biotite (1)
-
muscovite (2)
-
phlogopite (1)
-
-
-
-
sulfates
-
alunite (1)
-
anhydrite (1)
-
barite (1)
-
bassanite (1)
-
gypsum (1)
-
voltaite (1)
-
-
sulfides
-
molybdenite (1)
-
pyrite (1)
-
-
-
Primary terms
-
absolute age (23)
-
Africa
-
Central Africa
-
Congo Democratic Republic (1)
-
-
-
Asia
-
Middle East
-
Iran (1)
-
-
-
atmosphere (1)
-
Australasia
-
Australia
-
South Australia
-
Olympic Dam Deposit (1)
-
-
-
New Zealand
-
Lake Taupo (1)
-
-
-
bibliography (1)
-
biogeography (3)
-
bitumens
-
asphalt (1)
-
-
brines (1)
-
carbon
-
C-13/C-12 (4)
-
C-14 (3)
-
organic carbon (1)
-
-
Cenozoic
-
Quaternary
-
Holocene
-
upper Holocene (1)
-
-
Pleistocene
-
Bandelier Tuff (25)
-
Bishop Tuff (2)
-
Illinoian (1)
-
lower Pleistocene (1)
-
upper Pleistocene (5)
-
-
upper Quaternary (1)
-
-
Sierra Ladrones Formation (1)
-
Tertiary
-
Neogene
-
Miocene
-
Barstovian (1)
-
lower Miocene
-
Hemingfordian (1)
-
-
middle Miocene (1)
-
Paintbrush Tuff (1)
-
Topopah Spring Member (1)
-
upper Miocene (3)
-
Zia Formation (3)
-
-
Pliocene (4)
-
Tesuque Formation (9)
-
upper Neogene (1)
-
-
Paleogene
-
Eocene
-
lower Eocene
-
Wasatchian (1)
-
-
-
Oligocene
-
upper Oligocene (1)
-
-
Paleocene
-
lower Paleocene
-
Torrejonian (1)
-
-
Nacimiento Formation (1)
-
-
-
-
upper Cenozoic (4)
-
-
chemical analysis (1)
-
Chordata
-
Vertebrata
-
Tetrapoda
-
Amphibia
-
Labyrinthodontia
-
Temnospondyli (1)
-
-
Lissamphibia (1)
-
-
Aves
-
Neornithes (1)
-
-
Mammalia
-
Theria
-
Eutheria
-
Artiodactyla
-
Ruminantia
-
Tylopoda
-
Camelidae (1)
-
-
-
-
Rodentia (1)
-
-
-
-
Reptilia
-
Anapsida
-
Testudines
-
Cryptodira (1)
-
-
-
Diapsida
-
Archosauria
-
dinosaurs
-
Saurischia
-
Theropoda (1)
-
-
-
-
Lepidosauria
-
Squamata
-
Serpentes (1)
-
-
-
-
Synapsida
-
Pelycosauria (3)
-
-
-
-
-
-
clay mineralogy (2)
-
climate change (1)
-
crust (6)
-
crystal chemistry (3)
-
crystal growth (6)
-
crystal structure (4)
-
dams (3)
-
data processing (5)
-
deformation (15)
-
diagenesis (8)
-
earthquakes (9)
-
ecology (2)
-
economic geology (11)
-
electron microscopy (1)
-
engineering geology (1)
-
Europe
-
Central Europe
-
Germany
-
Saxony Germany (1)
-
-
-
Southern Europe
-
Iberian Peninsula
-
Portugal (1)
-
-
-
Western Europe
-
France (1)
-
Scandinavia
-
Sweden
-
Norrbotten Sweden
-
Kiruna Sweden (1)
-
-
-
-
United Kingdom
-
Great Britain
-
England
-
Cornwall England (1)
-
-
-
-
-
-
explosions (1)
-
faults (37)
-
folds (5)
-
foliation (1)
-
fractures (5)
-
gems (1)
-
geochemistry (18)
-
geochronology (14)
-
geodesy (1)
-
geomorphology (3)
-
geophysical methods (16)
-
geothermal energy (8)
-
ground water (22)
-
heat flow (1)
-
hydrogen
-
D/H (4)
-
tritium (2)
-
-
hydrogeology (2)
-
hydrology (20)
-
igneous rocks
-
plutonic rocks
-
granites (2)
-
lamprophyres
-
spessartite (1)
-
-
pegmatite (1)
-
-
volcanic rocks
-
andesites (1)
-
basalts (4)
-
dacites (2)
-
glasses
-
obsidian (1)
-
volcanic glass (3)
-
-
pyroclastics
-
ash-flow tuff (3)
-
ignimbrite (6)
-
pumice (5)
-
rhyolite tuff (3)
-
tuff (15)
-
welded tuff (1)
-
-
quartz latite (1)
-
rhyolites (8)
-
-
-
inclusions
-
fluid inclusions (5)
-
-
intrusions (2)
-
Invertebrata
-
Arthropoda
-
Mandibulata
-
Crustacea
-
Malacostraca (1)
-
-
-
-
Brachiopoda (1)
-
Cnidaria
-
Anthozoa
-
Zoantharia
-
Scleractinia (1)
-
-
-
-
Echinodermata
-
Echinozoa
-
Edrioasteroidea (1)
-
-
-
Protista
-
Foraminifera (1)
-
-
-
isotopes
-
radioactive isotopes
-
Al-26 (1)
-
Be-10 (1)
-
C-14 (3)
-
Pb-206/Pb-204 (1)
-
Rb-87/Sr-86 (2)
-
tritium (2)
-
U-238/U-234 (1)
-
-
stable isotopes
-
C-13/C-12 (4)
-
D/H (4)
-
He-3 (1)
-
Nd-144/Nd-143 (1)
-
O-18/O-16 (8)
-
Pb-206/Pb-204 (1)
-
Rb-87/Sr-86 (2)
-
S-34/S-32 (1)
-
Sr-87/Sr-86 (5)
-
-
-
lava (5)
-
magmas (12)
-
maps (1)
-
Mesozoic
-
Cretaceous
-
Dakota Formation (2)
-
Lower Cretaceous
-
Burro Canyon Formation (1)
-
-
Mancos Shale (4)
-
Middle Cretaceous (1)
-
Upper Cretaceous
-
Carlile Shale (1)
-
Fruitland Formation (1)
-
Turonian (1)
-
-
-
Jurassic
-
Lower Jurassic
-
Triassic-Jurassic boundary (1)
-
-
Middle Jurassic
-
Todilto Formation (1)
-
-
Upper Jurassic
-
Morrison Formation (3)
-
-
-
Moenave Formation (1)
-
Triassic
-
Upper Triassic
-
Carnian (1)
-
Chinle Formation (4)
-
Norian (2)
-
Petrified Forest Member (4)
-
Redonda Formation (2)
-
Rhaetian (1)
-
Shinarump Member (1)
-
Triassic-Jurassic boundary (1)
-
-
-
-
metal ores
-
antimony ores (1)
-
base metals (1)
-
copper ores (3)
-
gold ores (3)
-
molybdenum ores (2)
-
polymetallic ores (1)
-
silver ores (3)
-
tungsten ores (1)
-
uranium ores (1)
-
-
metals
-
actinides
-
plutonium (1)
-
uranium
-
U-238/U-234 (1)
-
-
-
alkali metals
-
rubidium
-
Rb-87/Sr-86 (2)
-
-
-
alkaline earth metals
-
barium (1)
-
beryllium
-
Be-10 (1)
-
-
magnesium (1)
-
strontium
-
Rb-87/Sr-86 (2)
-
Sr-87/Sr-86 (5)
-
-
-
aluminum
-
Al-26 (1)
-
-
iron
-
ferric iron (4)
-
-
lead
-
Pb-206/Pb-204 (1)
-
-
manganese (2)
-
niobium (1)
-
precious metals (1)
-
rare earths
-
neodymium
-
Nd-144/Nd-143 (1)
-
-
-
titanium (3)
-
-
metamorphic rocks
-
metasedimentary rocks (7)
-
metavolcanic rocks (2)
-
quartzites (1)
-
schists (1)
-
-
metamorphism (12)
-
metasomatism (7)
-
Mexico
-
Guanajuato Mexico (1)
-
-
mineral deposits, genesis (13)
-
mineral exploration (1)
-
mineralogy (2)
-
minerals (6)
-
mining geology (1)
-
museums (1)
-
noble gases
-
helium
-
He-3 (1)
-
-
-
North America
-
Basin and Range Province (1)
-
North American Cordillera (1)
-
Rio Grande Rift (30)
-
Rocky Mountains
-
Southern Rocky Mountains (5)
-
U. S. Rocky Mountains
-
San Juan Mountains (1)
-
Sangre de Cristo Mountains (7)
-
-
-
Western Interior (1)
-
-
orogeny (6)
-
oxygen
-
O-18/O-16 (8)
-
-
paleoclimatology (4)
-
paleoecology (5)
-
paleogeography (15)
-
paleomagnetism (6)
-
paleontology (9)
-
Paleozoic
-
Carboniferous
-
Pennsylvanian
-
Lower Pennsylvanian
-
Morrowan (2)
-
-
Middle Pennsylvanian
-
Atokan
-
Atoka Formation (1)
-
-
-
Upper Pennsylvanian
-
Missourian (1)
-
-
-
-
Madera Formation (1)
-
Permian
-
Cutler Formation (7)
-
Lower Permian
-
Abo Formation (2)
-
Wichita Group (1)
-
Wolfcampian (1)
-
-
-
upper Paleozoic (2)
-
-
palynomorphs
-
miospores (1)
-
-
paragenesis (3)
-
petroleum
-
natural gas (3)
-
-
petrology (11)
-
Phanerozoic (1)
-
phase equilibria (5)
-
plate tectonics (6)
-
pollution (18)
-
Precambrian
-
upper Precambrian
-
Proterozoic
-
Mesoproterozoic (3)
-
Neoproterozoic (1)
-
Ortega Group (4)
-
Paleoproterozoic (3)
-
-
-
Vadito Group (1)
-
-
reclamation (1)
-
remote sensing (1)
-
reservoirs (1)
-
rock mechanics (1)
-
sea-level changes (1)
-
sedimentary petrology (5)
-
sedimentary rocks
-
carbonate rocks
-
limestone (1)
-
travertine (2)
-
-
chemically precipitated rocks
-
evaporites (1)
-
-
clastic rocks
-
conglomerate (7)
-
fanglomerate (2)
-
mudstone (3)
-
red beds (2)
-
sandstone (8)
-
shale (1)
-
siltstone (1)
-
-
-
sedimentary structures
-
bedding plane irregularities
-
ripple marks (1)
-
-
biogenic structures
-
bioturbation (2)
-
-
planar bedding structures
-
cross-bedding (5)
-
laminations (1)
-
sand bodies (1)
-
-
secondary structures
-
concretions (2)
-
-
soft sediment deformation (1)
-
-
sedimentation (25)
-
sediments
-
clastic sediments
-
alluvium (3)
-
clay (3)
-
colluvium (1)
-
sand (3)
-
-
-
seismology (2)
-
silicon (1)
-
slope stability (1)
-
soil mechanics (1)
-
soils
-
volcanic soils (1)
-
-
South America
-
Argentina (1)
-
Peru (1)
-
-
spectroscopy (1)
-
springs (4)
-
stratigraphy (18)
-
structural analysis (3)
-
structural geology (10)
-
sulfur
-
S-34/S-32 (1)
-
-
symposia (1)
-
tectonics
-
neotectonics (11)
-
-
tectonophysics (2)
-
thermal waters (3)
-
United States
-
Albuquerque Basin (2)
-
Arizona
-
Petrified Forest National Park (1)
-
Pima County Arizona (1)
-
-
California
-
Inyo County California
-
Inyo Mountains (1)
-
-
Mono County California
-
Inyo Domes (1)
-
Obsidian Dome (1)
-
-
-
Colorado
-
Archuleta County Colorado (1)
-
Boulder County Colorado (1)
-
El Paso County Colorado (1)
-
La Plata County Colorado (1)
-
Mineral County Colorado
-
Creede mining district (1)
-
-
Montezuma County Colorado (1)
-
Montrose County Colorado (1)
-
Rio Grande County Colorado (1)
-
-
Colorado Plateau (7)
-
Montana
-
Carbon County Montana (1)
-
-
Nevada
-
Nevada Test Site (1)
-
Nye County Nevada
-
Yucca Mountain (2)
-
-
-
New Mexico
-
Animas Mountains (1)
-
Bernalillo County New Mexico (4)
-
Colfax County New Mexico (2)
-
Datil-Mogollon volcanic field (1)
-
Grants mineral belt (1)
-
Guadalupe County New Mexico (1)
-
Hidalgo County New Mexico (1)
-
Jemez Lineament (4)
-
Jemez Mountains (27)
-
Los Alamos County New Mexico
-
Los Alamos National Laboratory (31)
-
-
McKinley County New Mexico (1)
-
Mora County New Mexico (2)
-
Pajarito Plateau (22)
-
Picuris Range (7)
-
Rio Arriba County New Mexico
-
Ghost Ranch (2)
-
Nacimiento Mountains (4)
-
-
San Juan County New Mexico (1)
-
San Miguel County New Mexico (2)
-
Sandia Mountains (1)
-
Sandoval County New Mexico
-
Fenton Hill (3)
-
-
Santa Fe County New Mexico
-
Santa Fe New Mexico (5)
-
-
Taos County New Mexico
-
Questa Caldera (1)
-
-
Taos Plateau (1)
-
Tusas Mountains (5)
-
Valencia County New Mexico (1)
-
Valles Caldera (30)
-
-
Oklahoma
-
Cherokee County Oklahoma (1)
-
Wagoner County Oklahoma (1)
-
-
Texas
-
Archer County Texas (1)
-
Baylor County Texas (1)
-
Wichita County Texas (1)
-
-
U. S. Rocky Mountains
-
San Juan Mountains (1)
-
Sangre de Cristo Mountains (7)
-
-
Uncompahgre Uplift (2)
-
Utah
-
Carbon County Utah (1)
-
San Juan County Utah (1)
-
-
Western U.S. (2)
-
Wyoming
-
Big Horn County Wyoming (1)
-
-
Yavapai Province (1)
-
-
volcanology (8)
-
waste disposal (15)
-
water resources (1)
-
weathering (1)
-
well-logging (5)
-
-
rock formations
-
San Jose Formation (1)
-
Sandia Formation (3)
-
Santa Fe Group (9)
-
-
sedimentary rocks
-
calcrete (1)
-
sedimentary rocks
-
carbonate rocks
-
limestone (1)
-
travertine (2)
-
-
chemically precipitated rocks
-
evaporites (1)
-
-
clastic rocks
-
conglomerate (7)
-
fanglomerate (2)
-
mudstone (3)
-
red beds (2)
-
sandstone (8)
-
shale (1)
-
siltstone (1)
-
-
-
volcaniclastics (8)
-
-
sedimentary structures
-
channels (1)
-
mounds (1)
-
sedimentary structures
-
bedding plane irregularities
-
ripple marks (1)
-
-
biogenic structures
-
bioturbation (2)
-
-
planar bedding structures
-
cross-bedding (5)
-
laminations (1)
-
sand bodies (1)
-
-
secondary structures
-
concretions (2)
-
-
soft sediment deformation (1)
-
-
-
sediments
-
sediments
-
clastic sediments
-
alluvium (3)
-
clay (3)
-
colluvium (1)
-
sand (3)
-
-
-
volcaniclastics (8)
-
-
soils
-
paleosols (4)
-
soils
-
volcanic soils (1)
-
-
GeoRef Categories
Era and Period
Epoch and Age
Book Series
Date
Availability
Estimating Kappa within a Low‐Seismicity Region in Northern New Mexico Using Data Recorded by the Los Alamos Seismic Network Available to Purchase
Compositional zoning of the Otowi Member of the Bandelier Tuff, Valles caldera, New Mexico, USA Open Access
Large negative δ 238 U anomalies in endogenic-type travertine systems Available to Purchase
Circa 1.50–1.45 Ga metasedimentary rocks in southwestern Laurentia provide distinctive records of Mesoproterozoic regional orogenesis and craton interactions Available to Purchase
ABSTRACT The discovery of multiple deformed and metamorphosed sedimentary successions in southwestern Laurentia that have depositional ages between ca. 1.50 and 1.45 Ga marked a turning point in our understanding of the Mesoproterozoic tectonic evolution of the continent and its interactions with formerly adjacent cratons. Detrital zircon U-Pb ages from metasedimentary strata and igneous U-Pb zircon ages from interbedded metavolcanic rocks in Arizona and New Mexico provide unequivocal evidence for ca. 1.50–1.45 Ga deposition and burial, followed by ca. 1.45 and younger deformation, metamorphism, and plutonism. These events reflect regional shortening and crustal thickening that are most consistent with convergent to collisional orogenesis—the Mesoproterozoic Picuris orogeny—in southwestern Laurentia. Similar metasedimentary successions documented in the midcontinent of the United States and in eastern Canada help to establish ca. 1.45 Ga orogenesis as a continent-scale phenomenon associated with a complex and evolving convergent margin along southern Laurentia. Metasedimentary successions of similar age are also exposed across ~5000 km of the western Laurentian margin and contain distinctive 1.6–1.5 Ga detrital zircon populations that are globally rare except in select cratonic provinces in Australia and Antarctica. The recognition of these distinctive detrital zircon ages provides a transient record of plate interactions prior to breakup of Nuna or Columbia ca. 1.45 Ga and provides key constraints on global plate reconstructions.
Efficient release of bromine by super-eruptions Open Access
Tectonic controls on basement exhumation in the southern Rocky Mountains (United States): The power of combined zircon (U-Th)/He and K-feldspar 40 Ar/ 39 Ar thermochronology Available to Purchase
Titanium diffusion profiles and melt inclusion chemistry and morphology in quartz from the Tshirege Member of the Bandelier Tuff Available to Purchase
Impact of Depositional and Diagenetic Heterogeneity on Multiscale Mechanical Behavior of Mancos Shale, New Mexico and Utah, USA Available to Purchase
ABSTRACT Shales are enigmatic rock types with compositional and textural heterogeneity across a range of scales. This work addresses pore- to core-scale mechanical heterogeneity of Cretaceous Mancos Shale, a thick mudstone with widespread occurrence across the western interior of the United States. Examination of a ~100 m (~328 ft) core from the eastern San Juan Basin, New Mexico, suggests division into seven lithofacies, encompassing mudstones, sandy mudstones, and muddy sandstones, displaying different degrees of bioturbation. Ultrasonic velocity measurements show small measurable differences between the lithofacies types, and these are explained in terms of differences in allogenic (clay and sand) and authigenic (carbonate cement) mineralogy. Variations in ultrasonic velocities can be related to well log velocity profiles, which allow correlation across much of the eastern San Juan Basin. A quarry block of Mancos Shale from eastern Utah, USA, a common target for unconventional exploration and ultrasonically, compositionally, and texturally similar to the laminated muddy sandstone (LMS) lithofacies of the San Juan core, is examined to sublaminae or micro-lithofacies scales using optical petrographic and electron microscopy. This is mapped to results from axisymmetric compression (ASC) and indirect tensile strength testing of this facies at the core-plug scale and nanoindentation measurements at the micron scale. As anticipated, there is a marked difference in elastic and failure response in axisymmetric and cylinder splitting tests relating to loading orientation with respect to bedding or lamination. Shear bands and Mode-I fractures display contrasting fabric when produced at low or high angles with respect to lamination. Nanoindentation, mineralogy distribution based on MAPS (modular automated processing system) technique, and high-resolution backscattered electron images show the effect of composition, texture phases, and interfaces of phases on mechanical properties. A range of Young’s moduli from nanoindentation is generally larger by a factor of 1–4 compared with ASC results, showing the important effect of pores, microcracks, and bedding boundaries on bulk elastic response. Together these data sets show the influence of cement distribution on mechanical response. Variations in micro-lithofacies are first-order factors in determining the mechanical response of this important Mancos constituent and are likely responsible for its success in hydrofracture-based recovery operations as compared with other Mancos lithofacies types.
Seismicity Monitoring in North‐Central New Mexico by the Los Alamos Seismic Network Available to Purchase
Using Machine Learning to Discern Eruption in Noisy Environments: A Case Study Using CO 2 ‐Driven Cold‐Water Geyser in Chimayó, New Mexico Available to Purchase
Detrital shocked zircon provides first radiometric age constraint (<1472 Ma) for the Santa Fe impact structure, New Mexico, USA Available to Purchase
Compositional variation of turquoise-group minerals from the historical collection of the Real Museo Mineralogico of the University of Naples Available to Purchase
An Experimental Topographic Amplification Study at Los Alamos National Laboratory Using Ambient Vibrations Available to Purchase
Nanoscale deformation twinning in xenotime, a new shocked mineral, from the Santa Fe impact structure (New Mexico, USA) Available to Purchase
Redefining the metamorphic history of the oldest rocks in the southern Rocky Mountains Available to Purchase
A new baenid turtle from the early Paleocene (Torrejonian) of New Mexico and a species-level phylogenetic analysis of Baenidae Available to Purchase
Fractionation of Dissolved Organic Matter by (Oxy)Hydroxide-Coated Sands: Competitive Sorbate Displacement during Reactive Transport Available to Purchase
Spatial and temporal trends in pre-caldera Jemez Mountains volcanic and fault activity Open Access
Syndepositional deformation and provenance of Oligocene to Lower Miocene sedimentary rocks along the western margin of the Rio Grande rift, Jemez Mountains, New Mexico Available to Purchase
Two Oligocene conglomeratic units, one primarily nonvolcaniclastic and the other volcaniclastic, are preserved on the west side of the Jemez Mountains beneath the 14 Ma to 40 ka lavas and tuffs of the Jemez Mountains volcanic field. Thickness changes in these conglomeratic units across major normal fault zones, particularly in the southwestern Jemez Mountains, suggest that the western margin of the Rio Grande rift was active in this area during Oligocene time. Furthermore, soft-sediment deformation and stratal thickening in the overlying Abiquiu Formation adjacent to the western boundary faults are indicative of syndepositional normal-fault activity during late Oligocene–early Miocene time. The primarily nonvolcaniclastic Oligocene conglomerate, which was derived from erosion of Proterozoic basement-cored Laramide highlands, is exposed in the northwestern Jemez Mountains, southern Tusas Mountains, and northern Sierra Nacimiento. This conglomerate, formerly called, in part, the lower member of the Abiquiu Formation, is herein assigned to the Ritito Conglomerate in the Jemez Mountains and Sierra Nacimiento. The clast content of the Ritito Conglomerate varies systematically from northeast to southwest, ranging from Proterozoic basement clasts with a few Cenozoic volcanic pebbles, to purely Proterozoic clasts, to a mix of Proterozoic basement and Paleozoic limestone clasts. Paleocurrent directions indicate flow mainly to the south. A stratigraphically equivalent volcaniclastic conglomerate is present along the Jemez fault zone in the southwestern Jemez Mountains. Here, thickness variations, paleocurrent indicators, and grain-size trends suggest north-directed flow, opposite that of the Ritito Conglomerate, implying the existence of a previously unrecognized Oligocene volcanic center buried beneath the northern Albuquerque Basin. We propose the name Gilman Conglomerate for this deposit. The distinct clast composition and restricted geographic nature of each conglomerate suggests the presence of two separate fluvial systems, one flowing south and the other flowing north, separated by a west-striking topographic barrier in the vicinity of Fenton Hill and the East Fork Jemez River in the western Jemez Mountains during Oligocene time. In contrast, the Upper Oligocene–Lower Miocene Abiquiu Formation overtopped this barrier and was deposited as far south as the southern Jemez Mountains. The Abiquiu Formation, which is derived mainly from the Latir volcanic field, commonly contains clasts of dacite lava and Amalia Tuff in the northern and southeastern Jemez Mountains, but conglomerates are rare in the southwestern Jemez Mountains.
Deformational and erosional history for the Abiquiu and contiguous area, north-central New Mexico: Implications for formation of the Abiquiu embayment and a discussion of new geochronological and geochemical analysis Available to Purchase
Geologic mapping, age determinations, and geochemistry of rocks exposed in the Abiquiu area of the Abiquiu embayment of the Rio Grande rift, north-central New Mexico, provide data to determine fault-slip and incision rates. Vertical-slip rates for faults in the area range from 16 m/m.y. to 42 m/m.y., and generally appear to decrease from the eastern edge of the Colorado Plateau to the Abiquiu embayment. Incision rates calculated for the period ca. 10 to ca. 3 Ma indicate rapid incision with rates that range from 139 m/m.y. on the eastern edge of the Colorado Plateau to 41 m/m.y. on the western part of the Abiquiu embayment. The Abiquiu area is located along the margin of the Colorado Plateau–Rio Grande rift and lies within the Abiquiu embayment, a shallow, early extensional basin of the Rio Grande rift. Cenozoic rocks include the Eocene El Rito Formation, Oligocene Ritito Conglomerate, Oligocene–Miocene Abiquiu Formation, and Miocene Chama–El Rito and Ojo Caliente Sandstone Members of the Tesuque Formation (Santa Fe Group). Volcanic rocks include the Lobato Basalt (Miocene; ca. 15–8 Ma), El Alto Basalt (Pliocene; ca. 3 Ma), and dacite of the Tschicoma Formation (Pliocene; ca. 2 Ma). Quaternary deposits consist of inset axial and side-stream deposits of the ancestral Rio Chama (Pleistocene in age), landslide and pediment alluvium and colluvium, and Holocene main and side-stream channel and floodplain deposits of the modern Rio Chama. The predominant faults are Tertiary normal high-angle faults that displace rocks basinward. A low-angle fault, referred to as the Abiquiu fault, locally separates an upper plate composed of the transitional zone of the Ojo Caliente Sandstone and Chama–El Rito Members from a lower plate consisting of the Abiquiu Formation or the Ritito Conglomerate. The upper plate is distended into blocks that range from about 0.1 km to 3.5 km long that may represent a larger sheet that has been broken up and partly eroded. Geochronology ( 40 Ar/ 39 Ar) from fifteen volcanic and intrusive rocks resolves discrete volcanic episodes in the Abiquiu area: (1) emplacement of Early and Late Miocene basaltic dikes at 20 Ma and ca. 10 Ma; (2) extensive Late Miocene–age lava flows at 9.5 Ma, 7.9 Ma, and 5.6 Ma; and (3) extensive basaltic eruptions during the early Pliocene at 2.9 Ma and 2.4 Ma. Clasts of biotite- and hornblende-rich trachyandesites and trachydacites from the base of the Abiquiu Formation are dated at ca. 27 Ma, possibly derived from the Latir volcanic field. The most-mafic magmas are interpreted to be generated from a similar lithospheric mantle during rifting, but variations in composition are correlated with partial melting at different depths, which is correlated with thinning of the crust due to extensional processes.