- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Asia
-
Far East
-
China
-
Anhui China (1)
-
Yangtze River (1)
-
-
-
-
Europe
-
Western Europe
-
Belgium (4)
-
France
-
Haute-Marne France (1)
-
Meuse France (1)
-
-
-
-
-
commodities
-
metal ores
-
copper ores (1)
-
molybdenum ores (1)
-
polymetallic ores (1)
-
-
mineral deposits, genesis (1)
-
mineral exploration (1)
-
-
geologic age
-
Cenozoic
-
Tertiary
-
Paleogene
-
Oligocene
-
Boom Clay (4)
-
-
-
-
-
-
Primary terms
-
Asia
-
Far East
-
China
-
Anhui China (1)
-
Yangtze River (1)
-
-
-
-
Cenozoic
-
Tertiary
-
Paleogene
-
Oligocene
-
Boom Clay (4)
-
-
-
-
-
Europe
-
Western Europe
-
Belgium (4)
-
France
-
Haute-Marne France (1)
-
Meuse France (1)
-
-
-
-
heat flow (1)
-
metal ores
-
copper ores (1)
-
molybdenum ores (1)
-
polymetallic ores (1)
-
-
mineral deposits, genesis (1)
-
mineral exploration (1)
-
sediments
-
clastic sediments
-
clay (1)
-
-
-
tunnels (1)
-
underground installations (1)
-
waste disposal (4)
-
-
sediments
-
sediments
-
clastic sediments
-
clay (1)
-
-
-
Forty years of investigation into the thermo-hydromechanical behaviour of Boom Clay in the HADES URL
Abstract The heat generated by high-level waste or spent fuel will create disturbances around a deep geological repository (DGR) containing these wastes. Since the 1990s, SCK CEN, EIG EURIDICE and ONDRAF/NIRAS have been characterizing the thermo-hydromechanical (THM) behaviour of Boom Clay and assessing the impact of the thermal disturbances. This research has included laboratory tests as well as in situ experiments in the HADES Underground Research Laboratory. The two types of tests have been complementary. Laboratory tests have allowed understanding of the THM behaviour and determination of associated values of the THM parameters of the clay under well-controlled boundary conditions and loading paths. This knowledge and the parameters were then validated and even improved by in situ tests which allowed investigation of the effects of temperature on the Boom Clay behaviour at large scales. This paper gives an overview of this research and presents the main findings. It also explains how the knowledge gained supports the design of a possible future DGR and contributes to assessing the extent and impact of the THM disturbances in the Boom Clay around a DGR.
Abstract To examine the impact of the heat generated by high-level radioactive waste on Boom Clay, two heater tests have been launched in the HADES underground research facility: the small-scale ATLAS Heater Test and the large-scale PRACLAY Heater Test. The major objective of these tests is to confirm and refine the thermo-hydro-mechanical (THM) constitutive models and associated parameter values obtained from a laboratory characterization programme. This paper presents the observations from the ATLAS and PRACLAY heater tests and the combined numerical modelling of these tests. To characterize the excavation damaged zone in the clay around these tests, a mechanical model with a strain-dependent elastic modulus is introduced for the Boom Clay. The consistency between the observations from laboratory tests and in-situ tests and the outcomes from the numerical models strengthen the confidence in our understanding of the THM behaviour of Boom Clay. They also enabled us to validate the mechanical model and produce a set of anisotropic THM property values for both intact and damaged Boom Clay.
Abstract When the Belgian Nuclear Research Centre (SCK CEN) launched a research, development and demonstration programme on geological disposal in the 1970s, it was not certain if a deep geological repository could be constructed in poorly indurated clay. This was tested by constructing the HADES underground research laboratory (URL) in Boom Clay, 225 m below SCK CEN's site in Mol. The construction history of the URL reflects how the understanding of the Boom Clay increased and how the excavation techniques and design of the gallery lining improved. It demonstrated that shafts, galleries and crossings between galleries can be constructed using industrial techniques. It also allowed characterization of the hydromechanical response of the clay and the clay disturbances induced by the excavation. This increased understanding is also reflected in the evolution of the geological disposal concept considered in Belgium. The current disposal concept foresees the installation of seals in the shafts and galleries. The HADES URL also offered the opportunity to test possible seal designs and develop a better understanding of the behaviour of bentonite, a possible seal material, owing to its swelling capacity, under in situ conditions.
Abstract Demonstrating the feasibility of constructing tunnels in deep clay formations is an important goal of the Belgian RD&D programme on the geological disposal of radioactive waste. In 2002 a major achievement was reached when the HADES Underground Research Laboratory (URL) in Boom Clay was extended with the construction of the Connecting Gallery. This demonstrated that it is feasible to construct galleries in poorly indurated clays using industrial techniques. To monitor the mechanical behaviour of the gallery and assess its stability, strain gauges were embedded in the segmental gallery lining and prisms were installed on the segments. These sensors provide valuable information that will support the design of future galleries. This paper presents 20 years of monitoring data in the Connecting Gallery and a first analysis of these data in terms of Boom Clay behaviour. In addition, the key findings are compared with those of a similar analysis performed by Andra (the French Radioactive Waste Agency) at the Meuse/Haute-Marne URL. The latter URL is excavated in the Callovo-Oxfordian claystone. The comparison identifies general trends and highlights similarities between the behaviour of tunnels in poorly indurated clay (Boom Clay) and in claystone.