- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Europe
-
Western Europe
-
Belgium (2)
-
-
-
-
geologic age
-
Cenozoic
-
Tertiary
-
Paleogene
-
Oligocene
-
Boom Clay (2)
-
-
-
-
-
-
Primary terms
-
Cenozoic
-
Tertiary
-
Paleogene
-
Oligocene
-
Boom Clay (2)
-
-
-
-
-
Europe
-
Western Europe
-
Belgium (2)
-
-
-
underground installations (1)
-
waste disposal (2)
-
Abstract To examine the impact of the heat generated by high-level radioactive waste on Boom Clay, two heater tests have been launched in the HADES underground research facility: the small-scale ATLAS Heater Test and the large-scale PRACLAY Heater Test. The major objective of these tests is to confirm and refine the thermo-hydro-mechanical (THM) constitutive models and associated parameter values obtained from a laboratory characterization programme. This paper presents the observations from the ATLAS and PRACLAY heater tests and the combined numerical modelling of these tests. To characterize the excavation damaged zone in the clay around these tests, a mechanical model with a strain-dependent elastic modulus is introduced for the Boom Clay. The consistency between the observations from laboratory tests and in-situ tests and the outcomes from the numerical models strengthen the confidence in our understanding of the THM behaviour of Boom Clay. They also enabled us to validate the mechanical model and produce a set of anisotropic THM property values for both intact and damaged Boom Clay.
Abstract When the Belgian Nuclear Research Centre (SCK CEN) launched a research, development and demonstration programme on geological disposal in the 1970s, it was not certain if a deep geological repository could be constructed in poorly indurated clay. This was tested by constructing the HADES underground research laboratory (URL) in Boom Clay, 225 m below SCK CEN's site in Mol. The construction history of the URL reflects how the understanding of the Boom Clay increased and how the excavation techniques and design of the gallery lining improved. It demonstrated that shafts, galleries and crossings between galleries can be constructed using industrial techniques. It also allowed characterization of the hydromechanical response of the clay and the clay disturbances induced by the excavation. This increased understanding is also reflected in the evolution of the geological disposal concept considered in Belgium. The current disposal concept foresees the installation of seals in the shafts and galleries. The HADES URL also offered the opportunity to test possible seal designs and develop a better understanding of the behaviour of bentonite, a possible seal material, owing to its swelling capacity, under in situ conditions.