- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Atlantic Ocean
-
North Atlantic
-
Blake-Bahama Outer Ridge (1)
-
-
-
Canada
-
Western Canada
-
Northwest Territories
-
Mackenzie Delta (1)
-
-
-
-
United States
-
North Carolina (1)
-
-
-
commodities
-
petroleum
-
natural gas (1)
-
-
-
Primary terms
-
Atlantic Ocean
-
North Atlantic
-
Blake-Bahama Outer Ridge (1)
-
-
-
Canada
-
Western Canada
-
Northwest Territories
-
Mackenzie Delta (1)
-
-
-
-
continental slope (1)
-
fractures (1)
-
geochemistry (1)
-
Ocean Drilling Program
-
Leg 164
-
ODP Site 997 (1)
-
-
-
ocean floors (1)
-
petroleum
-
natural gas (1)
-
-
sediments
-
marine sediments (1)
-
-
United States
-
North Carolina (1)
-
-
-
sediments
-
sediments
-
marine sediments (1)
-
-
Abstract Grain size, pore content, and arrangement of pore constituents have a profound effect on acoustic and strength properties of sediments. We tested specimens containing gas hydrate, methane, and water in the pore space of coarse- and fine-grained sediments to simulate the marine environment and of frozen coarse-grained sediment to simulate permafrost conditions. The measured compressional wave velocity (Vp) changes with the extent to which the pore material cements sediment grains. Hence, for equal effective stresses, V p is lowest in gas-charged sediments, increases for water-saturated sediments, then increases significantly for hydrate-bearing sediments because of sediment cementation provided by hydrate. Frozen sediment, effectively fully saturated and fully cemented sediment, exhibits the highest V p. Sediment strength follows the same pattern but also shows a strong dependence on sediment grain size. For consolidation stresses associated with the upper several hundred meters of subbottom depth, pore pressures decreased during shear in coarse-grained sediments containing gas hydrate, thereby increasing strength, whereas pore pressure in fine-grained sediments typically increased during shear, which decreased strength. The presence of free gas in pore space damped the pore-pressure response during shear and reduced the strengthening effect of gas hydrate in sands.
Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate
Critical pressure and multiphase flow in Blake Ridge gas hydrates
Abstract The floor of the Yellow Sea is a geologically mundane surface: it is nearly horizontal, lacks relief, and, with few exceptions, is devoid of conspicuous geomorphologic features. However, it is the principal repository for the prodigious sediment load of the Huanghe (Yellow River); and, due to its inherent shallowness (average depth is 40 m), it is frequently stressed by waves generated by winter storms and typhoons. Analyses of mass physical properties of cores representing the upper few meters of sediment in the central and north-central Yellow Sea (near the Shandong Peninsula), in conjunction with analyses of slope stability, failure modes, and erodibility, permit an assessment of the likelihood and effect of dynamic, transient geologic events on the seabed. Vane shear-strength profiles along with consolidation test data indicate that the present surface of the seabed is in a depositional mode and is compacting normally. in addition, liquid-limit profiles imply that in the study area these neritic sediments have been accumulating in an environment that probably has not been modified significantly since sea level reached its current level. There is no geotechnical evidence in the nine cores recovered that slope failures have occurred, and clasts, sand lenses or other manifestations of mass movements, including flows, also are absent. These observations support previous interpretations of seismic records. Moreover, slope stability analysis for static conditions shows that the sea floor is quite stable. Regardless, shear-stress levels generated by cyclic loading during major storms may approach the sediment shear strengths, and, when coupled with concomitant excess pore pressures, could cause slope failure. Unless the failed beds collapsed or flowed, however, there probably would be little conspicuous evidence of such a failure. in fact, evaluation of the potential of these sediments for disintegrative behavior suggests that they are not prone to either collapse or flow. Storm waves also generate oscillatory bottom currents that may erode the seabed. Whether the sediment is considered as cohesionless or cohesive, typhoons could have the potential to erode at all water depths within the Yellow Sea (i.e., to 90 m), and winter storms to water depths of 60 m or more. However, in the case of cohesive behavior, it could be that the effect of winter storms and most typhoons is generally less extreme. If the sea floor is repeatedly scoured, it is likely limited to the top few centimeters. Despite the fact that storm waves may cause slope failure and are certainly responsible for frequent scouring, they probably leave only a subtle sedimentologic imprint on the seabed.