- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Asia
-
Far East
-
China
-
Sichuan Basin (2)
-
Xinjiang China
-
Kuqa Depression (1)
-
Tarim Basin (1)
-
-
-
-
Qiangtang Terrane (1)
-
Tibetan Plateau (1)
-
-
-
commodities
-
petroleum
-
natural gas
-
shale gas (1)
-
-
-
-
elements, isotopes
-
carbon
-
C-13/C-12 (1)
-
-
hydrogen (2)
-
isotope ratios (1)
-
isotopes
-
stable isotopes
-
C-13/C-12 (1)
-
O-18/O-16 (1)
-
-
-
large-ion lithophile elements (1)
-
metals
-
alkali metals
-
rubidium (1)
-
-
alkaline earth metals
-
strontium (1)
-
-
-
oxygen
-
O-18/O-16 (1)
-
-
-
geochronology methods
-
(U-Th)/He (1)
-
Ar/Ar (1)
-
fission-track dating (1)
-
Rb/Sr (1)
-
thermochronology (1)
-
U/Pb (1)
-
-
geologic age
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous (1)
-
-
Jurassic (1)
-
Triassic
-
Middle Triassic
-
Anisian (1)
-
-
-
-
Paleozoic
-
Cambrian
-
Lower Cambrian (1)
-
-
Permian
-
Lower Permian (1)
-
Middle Permian (1)
-
-
-
Precambrian
-
upper Precambrian
-
Proterozoic
-
Neoproterozoic
-
Dengying Formation (1)
-
-
Sinian
-
Dengying Formation (1)
-
-
-
-
-
-
igneous rocks
-
igneous rocks
-
plutonic rocks
-
granites (1)
-
-
volcanic rocks
-
basalts
-
mid-ocean ridge basalts (1)
-
-
-
-
pyrolite (1)
-
-
minerals
-
borates (1)
-
carbonates
-
dolomite (2)
-
-
silicates
-
orthosilicates
-
nesosilicates
-
olivine group
-
olivine (1)
-
ringwoodite (2)
-
wadsleyite (2)
-
-
-
-
sheet silicates
-
chlorite group
-
chlorite (1)
-
-
clay minerals
-
kaolinite (1)
-
smectite (1)
-
-
illite (1)
-
-
-
-
Primary terms
-
absolute age (1)
-
Asia
-
Far East
-
China
-
Sichuan Basin (2)
-
Xinjiang China
-
Kuqa Depression (1)
-
Tarim Basin (1)
-
-
-
-
Qiangtang Terrane (1)
-
Tibetan Plateau (1)
-
-
carbon
-
C-13/C-12 (1)
-
-
crystal structure (1)
-
diagenesis (1)
-
geochronology (1)
-
hydrogen (2)
-
igneous rocks
-
plutonic rocks
-
granites (1)
-
-
volcanic rocks
-
basalts
-
mid-ocean ridge basalts (1)
-
-
-
-
isotopes
-
stable isotopes
-
C-13/C-12 (1)
-
O-18/O-16 (1)
-
-
-
mantle (3)
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous (1)
-
-
Jurassic (1)
-
Triassic
-
Middle Triassic
-
Anisian (1)
-
-
-
-
metals
-
alkali metals
-
rubidium (1)
-
-
alkaline earth metals
-
strontium (1)
-
-
-
oxygen
-
O-18/O-16 (1)
-
-
Paleozoic
-
Cambrian
-
Lower Cambrian (1)
-
-
Permian
-
Lower Permian (1)
-
Middle Permian (1)
-
-
-
petroleum
-
natural gas
-
shale gas (1)
-
-
-
phase equilibria (1)
-
plate tectonics (1)
-
Precambrian
-
upper Precambrian
-
Proterozoic
-
Neoproterozoic
-
Dengying Formation (1)
-
-
Sinian
-
Dengying Formation (1)
-
-
-
-
-
sedimentary rocks
-
carbonate rocks
-
dolostone (1)
-
-
clastic rocks
-
black shale (2)
-
shale (1)
-
-
-
sedimentary structures
-
biogenic structures
-
microbial mats (1)
-
oncolites (1)
-
stromatolites (1)
-
thrombolites (1)
-
-
-
tectonics (2)
-
-
sedimentary rocks
-
laminite (1)
-
sedimentary rocks
-
carbonate rocks
-
dolostone (1)
-
-
clastic rocks
-
black shale (2)
-
shale (1)
-
-
-
-
sedimentary structures
-
laminite (1)
-
sedimentary structures
-
biogenic structures
-
microbial mats (1)
-
oncolites (1)
-
stromatolites (1)
-
thrombolites (1)
-
-
-
The Qiongzhusi-Dengying petroleum system in the Sichuan Basin, China
Coexisting Nb-enriched basalts and arc volcanic rocks in the northern Qiangtang Terrane, China: Implications for the effects of ambient mantle on subduction zone magmatism
Behavior of hydrogen defect and framework of Fe-bearing wadsleyite and ringwoodite at high temperature and high pressure
A gas-content calculation model for terrestrial shales in the Kuqa Depression, the Tarim Basin, Western China
Phase transition of wadsleyite-ringwoodite in the Mg 2 SiO 4 -Fe 2 SiO 4 system
Porosity In Microbial Carbonate Reservoirs in the Middle Triassic Leikoupo Formation (Anisian Stage), Sichuan Basin, China
Microbial carbonates developed in the Middle Triassic (Leikoupo Formation, Anisian Stage) of the western Sichuan Basin. The microbial components have been identified and include Renaclis-resembling , Rivularia lissaviensis , Carpathocodium anae , Hedstroemia moldavica , Bacinellacodium calcareus , and Paraortonella getica . These form stromatolitic, laminitic, thrombolitic, spongiostromata stones, dendrolites, and oncolitic structures. Microbial carbonate reservoirs occur in submember unit (SMU) 3-3 in the Zhongba area of the northern segment and SMU 4-3 in the middle segment of the western Sichuan Basin, both of which are of low porosity and permeability. Core descriptions and thin-section analysis show that reservoir porosity is mostly microbial coelom pores, framework pores, fenestral pores, and inter- and intraclot dissolved pores, within which the pores of ≥200 μm in diameter and throat of (40~50) μm are the most important. The SMU 4-3 microbial carbonate reservoirs are more thoroughly studied because of recent exploration activities, including the identification of three reservoir intervals. The middle reservoir interval, composed of thrombolitic and stromatolitic dolostone, hosts the reservoir of best quality. However, this high-quality interval loses effective porosity and thins to the northeast. It is proposed that extreme geological conditions, dolomitization, and burial dissolution influenced the development and distribution of the microbial carbonate reservoirs. The dolomitization process is thought to be penecontemporaneous to very early postdeposition. This early dolomitization contributed significantly to porosity of the microbial carbonate reservoirs and was likely enhanced through burial dissolution.