- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Africa
-
Congo Craton (1)
-
East Africa
-
Tanzania (1)
-
-
Southern Africa
-
Karoo Basin (1)
-
Namibia (1)
-
South Africa
-
Bushveld Complex (5)
-
Eastern Cape Province South Africa (1)
-
Merensky Reef (2)
-
Transvaal region (2)
-
-
-
-
Canada
-
Eastern Canada
-
Quebec
-
Matagami (1)
-
-
-
Labrador Trough (1)
-
-
North America
-
Canadian Shield
-
Superior Province
-
Abitibi Belt (1)
-
-
-
-
South America
-
Brazil
-
Bahia Brazil
-
Curaca River basin (1)
-
-
Sao Francisco Craton (2)
-
-
-
-
commodities
-
metal ores
-
cobalt ores (1)
-
copper ores (8)
-
gold ores (1)
-
nickel ores (7)
-
palladium ores (1)
-
platinum ores (7)
-
rhodium ores (1)
-
-
mineral deposits, genesis (6)
-
mineral exploration (5)
-
-
elements, isotopes
-
isotope ratios (2)
-
isotopes
-
stable isotopes
-
Nd-144/Nd-143 (1)
-
O-18/O-16 (1)
-
S-34/S-32 (2)
-
-
-
metals
-
copper (2)
-
nickel (1)
-
platinum group
-
palladium (1)
-
palladium ores (1)
-
platinum (1)
-
platinum ores (7)
-
rhodium ores (1)
-
-
rare earths
-
neodymium
-
Nd-144/Nd-143 (1)
-
-
-
-
oxygen
-
O-18/O-16 (1)
-
-
selenium (2)
-
sulfur
-
S-34/S-32 (2)
-
-
-
geochronology methods
-
U/Pb (2)
-
-
geologic age
-
Precambrian
-
Archean (1)
-
upper Precambrian
-
Proterozoic
-
Malmani Subgroup (1)
-
Mesoproterozoic (1)
-
-
-
-
-
igneous rocks
-
igneous rocks
-
plutonic rocks
-
anorthosite (1)
-
diorites (1)
-
gabbros
-
norite (1)
-
troctolite (1)
-
-
ultramafics
-
chromitite (3)
-
pyroxenite
-
orthopyroxenite (1)
-
-
-
-
-
-
metamorphic rocks
-
metamorphic rocks
-
gneisses
-
granite gneiss (1)
-
-
-
-
minerals
-
oxides
-
baddeleyite (1)
-
chromite (1)
-
ilmenite (1)
-
magnetite (1)
-
-
silicates
-
chain silicates
-
pyroxene group (1)
-
-
orthosilicates
-
nesosilicates
-
zircon group
-
zircon (1)
-
-
-
-
-
sulfides
-
bornite (1)
-
chalcopyrite (1)
-
laurite (1)
-
-
-
Primary terms
-
absolute age (2)
-
Africa
-
Congo Craton (1)
-
East Africa
-
Tanzania (1)
-
-
Southern Africa
-
Karoo Basin (1)
-
Namibia (1)
-
South Africa
-
Bushveld Complex (5)
-
Eastern Cape Province South Africa (1)
-
Merensky Reef (2)
-
Transvaal region (2)
-
-
-
-
Canada
-
Eastern Canada
-
Quebec
-
Matagami (1)
-
-
-
Labrador Trough (1)
-
-
crust (1)
-
geochemistry (2)
-
igneous rocks
-
plutonic rocks
-
anorthosite (1)
-
diorites (1)
-
gabbros
-
norite (1)
-
troctolite (1)
-
-
ultramafics
-
chromitite (3)
-
pyroxenite
-
orthopyroxenite (1)
-
-
-
-
-
intrusions (7)
-
isotopes
-
stable isotopes
-
Nd-144/Nd-143 (1)
-
O-18/O-16 (1)
-
S-34/S-32 (2)
-
-
-
magmas (8)
-
mantle (2)
-
metal ores
-
cobalt ores (1)
-
copper ores (8)
-
gold ores (1)
-
nickel ores (7)
-
palladium ores (1)
-
platinum ores (7)
-
rhodium ores (1)
-
-
metals
-
copper (2)
-
nickel (1)
-
platinum group
-
palladium (1)
-
palladium ores (1)
-
platinum (1)
-
platinum ores (7)
-
rhodium ores (1)
-
-
rare earths
-
neodymium
-
Nd-144/Nd-143 (1)
-
-
-
-
metamorphic rocks
-
gneisses
-
granite gneiss (1)
-
-
-
metamorphism (2)
-
metasomatism (1)
-
mineral deposits, genesis (6)
-
mineral exploration (5)
-
North America
-
Canadian Shield
-
Superior Province
-
Abitibi Belt (1)
-
-
-
-
oxygen
-
O-18/O-16 (1)
-
-
Precambrian
-
Archean (1)
-
upper Precambrian
-
Proterozoic
-
Malmani Subgroup (1)
-
Mesoproterozoic (1)
-
-
-
-
reefs (1)
-
selenium (2)
-
South America
-
Brazil
-
Bahia Brazil
-
Curaca River basin (1)
-
-
Sao Francisco Craton (2)
-
-
-
sulfur
-
S-34/S-32 (2)
-
-
tectonics (2)
-
In Situ Multiple Sulfur Isotope and S/Se Composition of Magmatic Sulfide Occurrences in the Labrador Trough, Northern Quebec
The Kunene Anorthosite Complex, Namibia, and Its Satellite Intrusions: Geochemistry, Geochronology, and Economic Potential
Abstract The Kabanga Ni sulfide deposit represents one of the most significant Ni sulfide discoveries of the last two decades, with current measured and indicated mineral resources of 37.2 million metric tons (Mt) at 2.63 percent Ni and inferred mineral resources of 21 Mt at 2.6 percent Ni (Dec. 2010, Xstrata.com). The sulfides occur in sill-like and chonolithic ultramafic-mafic intrusions that form part of the approximately 500-km long, 1.4-Ga Kabanga-Musongati-Kapalagulu mafic-ultramafic igneous belt, within the Karagwe-Ankole belt in northwestern Tanzania and adjacent Burundi. The intrusions are up to ∼1 km thick and 4 km long and crystallized from several pulses of compositionally distinct magma emplaced into sulfide-bearing pelitic schists. The first magma pulse consisted of siliceous high magnesium basalt with approximately 13 percent MgO. It formed a network of fine-grained acicular-textured gabbronoritic and orthopyroxenitic sills (Mg no. opx 78–88, An plag 45–88). The magma was highly enriched in incompatible trace elements (LILE, LREE) and had pronounced negative Nb and Ta anomalies and heavy O isotope signatures (δ 18 O 6–8), consistent with ∼20 percent contamination of primitive picrite with the sulfidic schists. Subsequent magma pulses were more magnesian, containing approximately 14 to 15 percent MgO, and less contaminated (e.g., δ 18 O 5.1–6.6). They injected into the earlier sills, forming medium-grained harzburgites and orthopyroxenites (Fo 83–89 , Mg no. Opx 86–89 ), and magmatic breccias consisting of gabbronorite-orthopyroxenite fragments within an olivine-rich matrix. The Kabanga intrusions contain abundant disseminated sulfides (pyrrhotite, pentlandite, and minor chalcopyrite and pyrite). In the lower portions and the immediate footwall of the Kabanga North and Kabanga Main intrusions, there occur numerous layers, lenses, and veins of massive Ni sulfides reaching a thickness of several meters. Postemplacement tilting of the intrusions caused solid-state mobilization of ductile sulfides into shear zones, notably along the base of the intrusions where sulfide-hornfels breccias and lenses and layers of massive sulfides may reach a thickness of >10 m and can extend for several 10s to >100 m away from the intrusions. These horizons represent an important exploration target for additional nickel sulfide deposits. Compared to other sulfide ores that segregated from magnesian basalts (e.g., Jinchuan, Pechenga, Raglan), most Kabanga sulfides have low Ni (<1–3%), Cu (∼0.1–0.4%), and PGE contents (<<1 ppm), and high Ni/Cu (5–15) ratios. Higher metal contents (∼5% Ni, 0.8% Cu, 10 ppm PGE) are found in only one unit from Kabanga North. The observed metal contents are consistent with segregation of magmatic sulfides from fertile to strongly metal-depleted magmas, at intermediate to very low mass ratios of silicate to sulfide liquid (R factors) of approximately 10 to 400. The sulfides have heavy S isotope signatures (δ 34 S wr = 10–24) that broadly overlap with those of the country-rock sulfides, consistent with significant assimilation of external sulfur from the Karagwe-Ankolean sedimentary sequence. Based on the relatively homogeneous distribution of disseminated sulfides in many of the intrusive rocks we propose that the magmas reached sulfide saturation prior to final emplacement, in staging chambers or feeder conduits, followed by entrainment of the sulfides during continued magma ascent. Oxygen isotope data indicate that the mode of sulfide assimilation changed with time. The early magmas assimilated smaller quantities of country rocks but, in addition, sulfur was selectively assimilated, either by means of a volatile phase or through cannibalization of magmatic sulfides deposited in the conduits by preceding magma surges. The unusually large degree of crustal contamination and the low R factors render Kabanga an end member in the spectrum of magmatic Ni sulfide ores.