- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Europe
-
Western Europe
-
United Kingdom
-
Great Britain
-
England (1)
-
-
-
-
-
-
commodities
-
petroleum
-
natural gas
-
shale gas (1)
-
-
-
-
geologic age
-
Paleozoic
-
Carboniferous
-
Namurian (1)
-
Upper Carboniferous
-
Millstone Grit (1)
-
Westphalian (1)
-
-
-
-
-
Primary terms
-
Europe
-
Western Europe
-
United Kingdom
-
Great Britain
-
England (1)
-
-
-
-
-
Paleozoic
-
Carboniferous
-
Namurian (1)
-
Upper Carboniferous
-
Millstone Grit (1)
-
Westphalian (1)
-
-
-
-
petroleum
-
natural gas
-
shale gas (1)
-
-
-
Abstract The Namurian and Westphalian sequences from the onshore well Scaftworth-B2, located in the Gainsborough Trough, central England, have been analysed for whole-rock inorganic geochemical data via inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (MS). The changes within key elements, and elemental ratios, results in a chemostratigraphic zonation scheme consisting of eight chemostratigraphic sequences and 13 chemostratigraphic packages, providing the type zonation for the Bowland Shale and overlying formations. Mineralogical data are provided by whole rock X-ray diffraction (XRD) and are used to calibrate the mineral modelling in order to generate a modelled mineral log for the study well. Furthermore, the modelled mineralogy is then used to calculate a relative brittleness for the samples, which can then be collaborated with traditional rock properties data at a later date. Elemental data can also be used to model the relative abundance of detrital quartz and biogenic silica; while total silicon is detected by ICP, biogenic silica is not detected by XRD owing to its amorphous nature. Enrichment factors calculated from the inorganic elemental data suggest that the sediment was deposited in an unrestricted marine setting, which experienced periods of anoxia.
Chemostratigraphy of Upper Carboniferous (Pennsylvanian) Sequences from the Southern North Sea (United Kingdom)
Abstract Important gas reservoirs occur in the Upper Carboniferous coal measures and red beds of the Southern North Sea. The thick red beds of the Boulton and Ketch formations are difficult to correlate, due to poor internal seismic definition, repetitive e-log signatures, and their barren nature. Although the underlying coal measures of the Westoe, Cleaver, and Caister Formations have better seismic resolution and contain palynomorphs, coals that die out laterally and the lack of diagnostic taxa over certain intervals contribute to their correlation being problematical. However, the application of chemostratigraphy to more than sixty wells from numerous fields in UK Quadrants 44 and 49, as well as from Dutch sector Blocks E, F, and K, allows the establishment of an independent, robust, detailed correlation framework for the aforesaid red beds and coal measures. Presented in this paper are correlative chemostratigraphic reference sections for the Caister, Westoe, Cleaver, Ketch, Boulton, and Step Graben formations. The chemostratigraphic zonations erected for these formations are based on variations in silty claystone geochemistry that can be tied to changes in provenance, climate, and depositional environment. In addition, the zonations are supported by stratigraphic changes in sandstone and coal geochemistry, the geochemical correlation of tonsteins and marine bands, and the recognition of different types of paleosol in the above formations. The chemostratigraphic correlation framework enables specific broad intervals (“packages”) to be correlated between fields and is also used to constrain seismic correlations with a view to highlighting potential exploration targets. Furthermore, the same framework allows much thinner intervals (“units” and “subunits”) to be correlated within fields: these smaller-scale correlations enhance reservoir correlations with respect to the development of fields such as Boulton, Schooner, Tyne, Ketch, and Topaz. In addition to using inorganic geochemical data to characterize and correlate sedimentological packages, data can also used to identify and correlate marker horizons and surfaces (tonsteins, coals, marine bands, major paleosols), which may be highly correlative low-diachrony surfaces, which greatly enhance the overall validity of the stratigraphic correlation scheme. Application of Modern Stratigraphic Techniques: Theory and Case Histories SEPM Special Publication No. 94, Copyright © 2010 SEPM (Society for Sedimentary Geology), ISBN 978-1-56576-199-5, p. 109–127.
Abstract Laterally extensive, thin, eustatically controlled, transgressive marine shale beds that occur within paralic sequences are generally regarded as reliable correlative markers. Such shale beds in the Carboniferous of NW Europe are referred to as marine bands and have been used extensively for stratigraphic correlations, particularly in the petroleum industry, where they are used to construct interwell correlations. True marine bands are represented by black anoxic shales (characterized by high U levels and high gamma API responses) that contain definitive ammonoid assemblages, i.e., demonstrably were deposited in a marine environment. However, not all black shales in the Carboniferous of NW Europe are the product of marine deposition, despite which they are still colloquially referred to as “marine bands” and are used for stratigraphic correlations. The problem of “marine band” recognition and correlation is exacerbated when dealing with well bores, where only wireline-log data and cuttings are available. This study demonstrates how inorganic geochemical data are used as a means to refine the identification of true marine bands and how these data can be used for enhanced stratigraphic correlations. “Marine-band chemostratigraphy” is established using core sections from the onshore Carboniferous Coal Measures sequences encountered in the West Midlands of England. Using variations in U, Mo, Zn, Cu, V, P 2 O 5 , Al 2 O 3 , Th, and Zr concentrations, a geochemically based facies classification scheme is erected, which allows the differentiation of mudstones deposited in marine, freshwater lacustrine, and floodplain environments, and which has been validated by palynological and sedimentological facies data. This scheme is successfully extended to a nearby well from which only cuttings are available. The general concept of marine-band chemostratigraphy can be applied to the sedimentary rocks deposited in any coastal-plain to marginal-marine setting. The methodology provides a robust technique for the identification and correlation of “marine bands” and also demonstrates the importance of inorganic geochemical data in the context of sequence stratigraphy. Application of Modern Stratigraphic Techniques: Theory and Case Histories SEPM Special Publication No. 94, Copyright © 2010 SEPM (Society for Sedimentary Geology), ISBN 978-1-56576-199-5, p. 221–238.