Update search
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
Format
Publisher
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Europe
-
Carpathians (1)
-
Pannonian Basin (1)
-
Southern Europe
-
Romania (1)
-
-
-
Mediterranean region (1)
-
-
elements, isotopes
-
isotope ratios (1)
-
isotopes
-
radioactive isotopes
-
Pb-206/Pb-204 (1)
-
Pb-207/Pb-204 (1)
-
Pb-208/Pb-204 (1)
-
-
stable isotopes
-
Nd-144/Nd-143 (1)
-
Pb-206/Pb-204 (1)
-
Pb-207/Pb-204 (1)
-
Pb-208/Pb-204 (1)
-
Sr-87/Sr-86 (1)
-
-
-
metals
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (1)
-
-
-
lead
-
Pb-206/Pb-204 (1)
-
Pb-207/Pb-204 (1)
-
Pb-208/Pb-204 (1)
-
-
rare earths
-
neodymium
-
Nd-144/Nd-143 (1)
-
-
-
-
-
geologic age
-
Cenozoic
-
Quaternary (1)
-
Tertiary
-
Neogene (1)
-
-
-
-
Primary terms
-
Cenozoic
-
Quaternary (1)
-
Tertiary
-
Neogene (1)
-
-
-
Europe
-
Carpathians (1)
-
Pannonian Basin (1)
-
Southern Europe
-
Romania (1)
-
-
-
isotopes
-
radioactive isotopes
-
Pb-206/Pb-204 (1)
-
Pb-207/Pb-204 (1)
-
Pb-208/Pb-204 (1)
-
-
stable isotopes
-
Nd-144/Nd-143 (1)
-
Pb-206/Pb-204 (1)
-
Pb-207/Pb-204 (1)
-
Pb-208/Pb-204 (1)
-
Sr-87/Sr-86 (1)
-
-
-
magmas (1)
-
mantle (1)
-
Mediterranean region (1)
-
metals
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (1)
-
-
-
lead
-
Pb-206/Pb-204 (1)
-
Pb-207/Pb-204 (1)
-
Pb-208/Pb-204 (1)
-
-
rare earths
-
neodymium
-
Nd-144/Nd-143 (1)
-
-
-
-
plate tectonics (1)
-
tectonics (1)
-
GeoRef Categories
Era and Period
Book Series
Date
Availability
Genesis of the Neogene to Quaternary volcanism in the Carpathian-Pannonian region: Role of subduction, extension, and mantle plume Available to Purchase
Neogene to Quaternary volcanism of the Carpathian-Pannonian region is part of the extensive volcanic activity in the Mediterranean and surrounding regions. Using the spatial and temporal distribution of the magmatic rocks, their major- and trace-element features, and Sr-Nd-Pb isotope characteristics, we suggest that lithospheric extension in the Pannonian Basin had a major role in the generation of the magmas. Dehydration of subducting slab should have resulted in thorough metasomatism in the mantle wedge during Cretaceous to early Miocene that would have lowered the melting temperature, therefore playing an indirect role in the generation of magmas later on. Mixing between mantle-derived magmas and lower-crustal melts was an important process at the first stage of the silicic and calc-alkaline magmatism in the Northern Pannonian Basin. However, the crustal component gradually decreased with time, which is consistent with magmatic activity in a continuously thinning continental plate. Calc-alkaline volcanism along the Eastern Carpathians was mostly postcollisional and could have been related to slab break-off processes. However, the fairly young (<1.5 Ma) potassic magmatism at the southeasternmost segment of the Carpathian volcanic arc could be explained by lithospheric delamination under the Vrancea zone. Alkaline basaltic volcanism began at the end of rifting of the Pannonian Basin (11 Ma) and continued until recently. We suggest that a mantle plume beneath the Pannonian Basin is highly unlikely and the mafic magmas were formed by small degree partial melting in a heterogeneous asthenospheric mantle, which has been close to the solidus temperature due to the lithospheric extension in the Miocene. Magmatism appears to have been in a waning phase for the last 2 m.y., but recent volcanic eruptions (<200 k.y.) indicate that future volcanic activity cannot be unambiguously ruled out.
Tertiary-Quaternary subduction processes and related magmatism in the Alpine-Mediterranean region Available to Purchase
Abstract During Tertiary to Quaternary times, convergence between Eurasia and Africa resulted in a variety of collisional orogens and different styles of subduction in the Alpine-Mediterranean region. Characteristic features of this area include arcuate orogenic belts and extensional basins, both of which can be explained by roll-back of subducted slabs and retreating subduction zones. After cessation of active subduction, slab detachment and post-collisional gravitational collapse of the overthickened lithosphere took place. This complex tectonic history was accompanied by the generation of a wide variety of magmas. Most of these magmas (e.g. low-K tholeiitic, calc-alkaline, shoshonitic and ultrapotassic types) have trace element and isotopic fingerprints that are commonly interpreted to reflect enrichment of their source regions by subduction-related fluids. Thus, they can be considered as ‘subduction-related’ magmas irrespective of their geodynamic relationships. Intraplate alkali basalts are also found in the region and generally postdated the ‘subduction-related’ volcanism. These mantle-derived magmas have not (or only slightly) been influenced by subduction-related enrichment. This paper summarizes the geodynamic setting of the Tertiary-Quaternary ‘subduction-related’ magmatism in the various segments of the Alpine-Mediterranean region (Betic-Alboran-Rif province, Central Mediterranean, the Alps, Carpathian-Pannonian region, Dinarides and Hellenides, Aegean and Western Anatolia), and discusses the main characteristics and compositional variation of the magmatic rocks. Radiogenic and stable isotope data indicate the importance of continental crustal material in the genesis of these magmas. Interaction with crustal material probably occurred both in the upper mantle during subduction (‘source contamination’) and in the continental crust during ascent of mantle-derived magmas (either by mixing with crustal melts or by crustal contamination). The 87 Sr/ 86 Sr and 206 Pb/ 204 Pb isotope ratios indicate that an enriched mantle component, akin to the source of intraplate alkali mafic magmas along the Alpine foreland, played a key role in the petrogenesis of the ‘subduction-related’ magmas of the Alpine-Mediterranean region. This enriched mantle component could be related to mantle plumes or to long-term pollution (deflection of the central Atlantic plume and recycling of crustal material during subduction) of the shallow mantle beneath Europe since the late Mesozoic. In the first case, subduction processes could have had an influence in generating asthenospheric flow by deflecting nearby mantle plumes as a result of slab roll-back or slab break-off. In the second case, the variation in the chemical composition of the volcanic rocks in the Mediterranean region can be explained by ‘statistical sampling’ of the strongly inhomogeneous mantle followed by variable degrees of crustal contamination.