- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Africa
-
Southern Africa
-
Kaapvaal Craton (1)
-
South Africa (1)
-
-
-
Europe
-
Central Europe
-
Germany
-
Eifel (1)
-
Rhineland-Palatinate Germany (1)
-
-
-
Rhenish Schiefergebirge
-
Eifel (1)
-
-
Southern Europe
-
Iberian Peninsula
-
Spain
-
Balearic Islands
-
Majorca (1)
-
-
-
-
-
-
Mediterranean region
-
Balearic Islands
-
Majorca (1)
-
-
-
-
commodities
-
brines (1)
-
oil and gas fields (1)
-
petroleum (1)
-
-
elements, isotopes
-
isotope ratios (1)
-
isotopes
-
stable isotopes
-
S-32 (1)
-
S-33 (1)
-
S-34 (1)
-
S-34/S-32 (1)
-
S-36 (1)
-
-
-
sulfur
-
S-32 (1)
-
S-33 (1)
-
S-34 (1)
-
S-34/S-32 (1)
-
S-36 (1)
-
-
-
fossils
-
ichnofossils (1)
-
Invertebrata
-
Cnidaria
-
Anthozoa
-
Zoantharia
-
Rugosa (1)
-
-
-
-
Echinodermata
-
Crinozoa
-
Crinoidea (1)
-
-
-
-
-
geologic age
-
Cenozoic
-
Tertiary
-
Neogene
-
Miocene
-
lower Miocene
-
Burdigalian (1)
-
-
middle Miocene
-
Langhian (1)
-
-
-
-
-
-
Paleozoic
-
Devonian
-
Middle Devonian (1)
-
-
-
Precambrian
-
Archean
-
Neoarchean (1)
-
-
Transvaal Supergroup (1)
-
upper Precambrian
-
Proterozoic
-
Great Oxidation Event (1)
-
Paleoproterozoic (1)
-
-
-
-
-
minerals
-
carbonates
-
aragonite (1)
-
-
sulfides
-
pyrite (1)
-
-
-
Primary terms
-
Africa
-
Southern Africa
-
Kaapvaal Craton (1)
-
South Africa (1)
-
-
-
brines (1)
-
Cenozoic
-
Tertiary
-
Neogene
-
Miocene
-
lower Miocene
-
Burdigalian (1)
-
-
middle Miocene
-
Langhian (1)
-
-
-
-
-
-
climate change (1)
-
deformation (1)
-
diagenesis (1)
-
Europe
-
Central Europe
-
Germany
-
Eifel (1)
-
Rhineland-Palatinate Germany (1)
-
-
-
Rhenish Schiefergebirge
-
Eifel (1)
-
-
Southern Europe
-
Iberian Peninsula
-
Spain
-
Balearic Islands
-
Majorca (1)
-
-
-
-
-
-
geochemistry (1)
-
ichnofossils (1)
-
Invertebrata
-
Cnidaria
-
Anthozoa
-
Zoantharia
-
Rugosa (1)
-
-
-
-
Echinodermata
-
Crinozoa
-
Crinoidea (1)
-
-
-
-
isotopes
-
stable isotopes
-
S-32 (1)
-
S-33 (1)
-
S-34 (1)
-
S-34/S-32 (1)
-
S-36 (1)
-
-
-
Mediterranean region
-
Balearic Islands
-
Majorca (1)
-
-
-
oil and gas fields (1)
-
paleoclimatology (1)
-
paleoecology (1)
-
Paleozoic
-
Devonian
-
Middle Devonian (1)
-
-
-
petroleum (1)
-
Precambrian
-
Archean
-
Neoarchean (1)
-
-
Transvaal Supergroup (1)
-
upper Precambrian
-
Proterozoic
-
Great Oxidation Event (1)
-
Paleoproterozoic (1)
-
-
-
-
sedimentary rocks
-
carbonate rocks
-
grainstone (1)
-
limestone (1)
-
rudstone (1)
-
wackestone (1)
-
-
clastic rocks
-
mudstone (1)
-
-
-
sedimentary structures
-
bedding plane irregularities
-
ripple marks (1)
-
-
planar bedding structures
-
laminations (1)
-
-
primary structures (1)
-
-
sulfur
-
S-32 (1)
-
S-33 (1)
-
S-34 (1)
-
S-34/S-32 (1)
-
S-36 (1)
-
-
-
sedimentary rocks
-
sedimentary rocks
-
carbonate rocks
-
grainstone (1)
-
limestone (1)
-
rudstone (1)
-
wackestone (1)
-
-
clastic rocks
-
mudstone (1)
-
-
-
-
sedimentary structures
-
sedimentary structures
-
bedding plane irregularities
-
ripple marks (1)
-
-
planar bedding structures
-
laminations (1)
-
-
primary structures (1)
-
-
Magmatically driven hydrocarbon generation and fluid flow in the Namibe Basin of Angola
Abstract Magmatic activity can severely alter the thermal structure of a sedimentary basin, with variable effects on the petroleum system. The Namibe Basin of Angola (Cretaceous South Atlantic rift) contains well-exposed magmatic and petroleum system elements and allows integrated assessment of how magmatic activity can modify the petroleum system. The basin was affected by syn-rift and post-rift magmatic events, and bitumen is observed within both the Pre- and Post-Salt stratigraphical sections. In the Pre-Salt, fluorescent bitumen has a lacustrine signature and is associated with calcite and quartz cements. Onshore Pre-Salt units are thermally immature, and therefore the source rock that generated the Pre-Salt bitumen is likely located offshore. Hydrocarbons migrated or re-migrated via magmatically driven fluids, reaching the present-day onshore. Closer to magmatic units, non-fluorescent pyrobitumen was instead observed, evidencing hydrocarbon cracking processes following emplacement. In the Post-Salt, bitumen is in situ and shows marine-like signatures compatible with an immediate Post-Salt source rock depositional environment. In the immediate Post-Salt, units with very high total organic carbon values (TOC; up to 13.8%) and excellent source rock properties (hydrogen index >600 mgHC g −1 TOC) have reached thermal maturation. Within the Namibe Basin these Post-Salt source units lie in proximity to major Turonian–Coniacian–Santonian volcanic centres and associated shallow intrusions, which are likely to have caused thermally forced maturation processes and generation of the Post-Salt hydrocarbons. This paper demonstrates the importance of an integrated field, petrographic and geochemical approach in unravelling the influence of magmatic activity on basin thermal structure and petroleum systems.
The Atlantic Jigsaw Puzzle and the geoheritage of Angola
Abstract The jigsaw-puzzle fit of South America and Africa is an icon of plate tectonics and continental drift. Fieldwork in Angola since 2002 allows the correlation of onshore outcrops and offshore geophysical and well-core data in the context of rift, sag, salt, and post-salt drift phases of the opening of the central South Atlantic. These outcrops, ranging in age from >130 Ma to <71 Ma, record Early Cretaceous outpouring of the Etendeka–Paraná Large Igneous Province (Bero Volcanic Complex) and rifting, followed by continental carbonate and siliciclastic deposition (Tumbalunda Formation) during the sagging of the nascent central South Atlantic basin. By the Aptian, evaporation of sea water resulted in thick salt deposits (Bambata Formation), terminated by seafloor spreading. The Equatorial Atlantic Gateway began opening by the early Late Cretaceous (100 Ma) and allowed flow of currents between the North and South Atlantic, creating environmental conditions that heralded the introduction of marine reptiles. These dramatic outcrops are a unique element of geoheritage because they arguably comprise the most complete terrestrially exposed geological record of the puzzle-like icon of continental drift.
Oil and gas reside in reservoirs within peritidal and shallow subtidal lagoonal carbonate sediments across the globe. This is a zone of facies heterogeneity, controlled by changes in depositional energy, water depth, clastic influx, and evapotranspiration. Close proximity to evaporitic brine pools means that it is also an environment with the potential for dolomitization during shallow burial. As a result, the original pore system of carbonate sediment can become drastically altered prior to burial, such that reservoir properties may not be predictable from facies models alone. The Miocene Santanyí Limestone Formation, Mallorca, Spain, is well exposed and has undergone minimal burial and therefore presents an excellent opportunity to integrate sedimentology, facies architecture, and diagenesis to determine how porosity evolves within individual facies in the shallow subsurface. From here, the impact on pore type, pore volume, pore connectivity, and petrophysical anisotropy can be assessed. The Santanyí Limestone consists of pale mudstones and wackestones, rooted wacke-packstones, stratiform laminites, and skeletal and oolitic, cross-bedded grainstone. Thin-section analysis reveals a paragenetic pathway of grain micritization, followed by dissolution of aragonite, possibly by meteoric fluids associated with karstification. Subsequently, the unit underwent fracturing, compaction, recrystallization, cementation, dolomitization, and matrix dissolution to form vugs. Petrophysical analyses of 2.54-cm-diameter plugs indicate that these complex diagenetic pathways created petrophysical anisotropy [mean horizontal permeability (Kh)/vertical permeability (Kv) of whole formation = 3.4] and that measured parameters cannot be related directly to either geological facies or pore type. Instead, petrophysical data can be grouped according to the diagenetic pathways that were followed after deposition. The best reservoir quality (i.e., typical porosity 15 to >40% and permeability >100 mD) is associated with pale mudstones, stratiform laminites, and skeletal and oolitic grainstone that have undergone pervasive recrystallization or dolomitization. These rocks have the some of the lowest formation resistivity factor (FRF) values (<200) and thus the simplest pore system. The poorest reservoir properties ( k <10 mD) occur in mudstones and wackestones that have not been recrystallized and, hence, are dominated by a simple network of micropores (FRF <101). Skeletal and oolitic grainstones and rooted and brecciated wacke-packstones that have undergone some cementation and partial recrystallization have moderate reservoir properties and a high FRF (>>1000), reflecting a complex pore system of biomolds, vugs, and microporosity. Consequently, reservoir properties can be predicted based on their primary rock properties and the diagenetic pathway that they followed after deposition.
Coral-Crinoid Biocoenosis and Resulting Trace Fossils from the Middle Devonian of the Eifel Synclines (Rhenish Massif, Germany)
Characterization of Fault-Related Dolomite Bodies in Carbonate Reservoirs Using Lidar Scanning
Abstract Fault-related dolomite subsurface reservoirs are formed from fluid circulation that results in significant transformation of the reservoir properties. The geometry and internal organization of such dolomitic reservoirs remain difficult to image with seismics alone. A multi-scale approach is essential to understand and predict the diagenetic processes that control the exact 3D morphology of the dolomite with spatial precision and true dimensions, and consequently the reservoir properties. In this context, we propose an analytical workflow including field work, LIDAR scanning and numerical geology applied to dolomite outcrops in Mesozoic carbonates (SE France). The exposed dolomite-limestone contact exhibits sinuous, irregular and convolute shapes, which are either fault-parallel, bedding-parallel or chaotic. To characterize this complex distribution, we performed LIDAR scanning on 500 m x 150 m cliffs and road cuts with 4.5 cm to 1–1.5 cm average point spacing. The cloud is composed of 22 millions points comprising X, Y, Z, intensity, red, green, and blue attributes. Digitization of the limestone-dolomite boundary was performed in RiscanPro and GOCAD environments, for extracting the true 3D geometry of the dolomite body for further geostatistical and 3D facies modelling. This approach captures the large-scale geometry of the dolomite bodies. However, single RGB or intensity properties do not unequivocally reproduce small-scale (below ∼ 1 m) heterogeneities of the late diagenetic dolomite. Color changes induced by weathering or climatic conditions are of the same size range as the small-scale heterogeneities, thus they are not unique to allow automated tracking on the point set. As a result, the workflow remains time-consuming, and further work is needed to allow calibration of the LIDAR data points with mineralogy.