Update search
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
Format
Article Type
Journal
Publisher
Section
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Australasia
-
Australia (1)
-
-
Canada
-
Eastern Canada
-
Ontario (1)
-
-
-
North America
-
Appalachians
-
Northern Appalachians (1)
-
-
Canadian Shield
-
Grenville Province (1)
-
-
Great Lakes
-
Lake Huron (1)
-
-
Great Lakes region (1)
-
-
United States
-
New York
-
Washington County New York (1)
-
-
-
-
commodities
-
brines (1)
-
-
elements, isotopes
-
chemical elements (1)
-
isotope ratios (1)
-
isotopes
-
radioactive isotopes (1)
-
stable isotopes
-
Nd-144/Nd-143 (1)
-
-
-
metals
-
alkali metals
-
potassium (1)
-
sodium (1)
-
-
iron
-
ferric iron (1)
-
-
manganese (1)
-
platinum group (1)
-
rare earths
-
neodymium
-
Nd-144/Nd-143 (1)
-
-
-
-
short-lived isotopes (1)
-
sulfur (2)
-
-
geologic age
-
Paleozoic
-
Cambrian (1)
-
Ordovician (1)
-
-
Precambrian
-
Archean (1)
-
Espanola Formation (1)
-
upper Precambrian
-
Proterozoic
-
Huronian (1)
-
-
-
-
-
igneous rocks
-
igneous rocks
-
volcanic rocks
-
basalts (1)
-
-
-
-
metamorphic rocks
-
metamorphic rocks
-
impactites
-
impact breccia (1)
-
-
metasedimentary rocks (1)
-
-
-
meteorites
-
meteorites
-
stony meteorites
-
achondrites
-
Martian meteorites (1)
-
-
-
-
-
minerals
-
minerals (1)
-
oxides
-
manganese oxides (1)
-
-
silicates
-
chain silicates
-
pyroxene group
-
clinopyroxene
-
diopside (1)
-
-
-
-
framework silicates
-
feldspar group
-
plagioclase
-
albite (1)
-
-
-
silica minerals
-
quartz (1)
-
-
-
orthosilicates
-
nesosilicates
-
olivine group
-
fayalite (1)
-
forsterite (1)
-
-
-
-
-
sulfates (2)
-
sulfides (1)
-
-
Primary terms
-
Australasia
-
Australia (1)
-
-
brines (1)
-
Canada
-
Eastern Canada
-
Ontario (1)
-
-
-
chemical analysis (1)
-
core (1)
-
crust (1)
-
diagenesis (2)
-
geochemistry (6)
-
geomorphology (1)
-
igneous rocks
-
volcanic rocks
-
basalts (1)
-
-
-
isotopes
-
radioactive isotopes (1)
-
stable isotopes
-
Nd-144/Nd-143 (1)
-
-
-
mantle (1)
-
metals
-
alkali metals
-
potassium (1)
-
sodium (1)
-
-
iron
-
ferric iron (1)
-
-
manganese (1)
-
platinum group (1)
-
rare earths
-
neodymium
-
Nd-144/Nd-143 (1)
-
-
-
-
metamorphic rocks
-
impactites
-
impact breccia (1)
-
-
metasedimentary rocks (1)
-
-
meteorites
-
stony meteorites
-
achondrites
-
Martian meteorites (1)
-
-
-
-
minerals (1)
-
Moon (1)
-
North America
-
Appalachians
-
Northern Appalachians (1)
-
-
Canadian Shield
-
Grenville Province (1)
-
-
Great Lakes
-
Lake Huron (1)
-
-
Great Lakes region (1)
-
-
orogeny (1)
-
paleoclimatology (1)
-
Paleozoic
-
Cambrian (1)
-
Ordovician (1)
-
-
petrology (1)
-
phase equilibria (1)
-
planetology (1)
-
plate tectonics (1)
-
Precambrian
-
Archean (1)
-
Espanola Formation (1)
-
upper Precambrian
-
Proterozoic
-
Huronian (1)
-
-
-
-
remote sensing (1)
-
sedimentary petrology (1)
-
sedimentary rocks
-
carbonate rocks (1)
-
chemically precipitated rocks
-
chert (1)
-
-
clastic rocks
-
arenite
-
quartz arenite (1)
-
-
graywacke (1)
-
mudstone (1)
-
sandstone (2)
-
-
-
sedimentary structures
-
secondary structures
-
concretions (1)
-
-
-
sedimentation (2)
-
spectroscopy (1)
-
sulfur (2)
-
United States
-
New York
-
Washington County New York (1)
-
-
-
X-ray analysis (1)
-
-
sedimentary rocks
-
sedimentary rocks
-
carbonate rocks (1)
-
chemically precipitated rocks
-
chert (1)
-
-
clastic rocks
-
arenite
-
quartz arenite (1)
-
-
graywacke (1)
-
mudstone (1)
-
sandstone (2)
-
-
-
-
sedimentary structures
-
sedimentary structures
-
secondary structures
-
concretions (1)
-
-
-
GeoRef Categories
Era and Period
Book Series
Date
Availability
Scientific Laws and Myths, Ockham’s Razor, and Multiple Working Hypotheses
Extraformational sediment recycling on Mars
High concentrations of manganese and sulfur in deposits on Murray Ridge, Endeavour Crater, Mars
Presentation of the Mineralogical Society of America Award for 2015 to Nicholas J. Tosca
Many of the discoveries made in geochemistry over the last 50 years have been driven by technological advances that have allowed analysis of smaller samples, attainment of better instrumental precision and accuracy or computational capability, and automation that has provided many more data. These advances occurred during development of revolutionary concepts, such as plate tectonics, which has provided an overarching framework for interpreting many geochemical studies. Also, spacecraft exploration of other planetary bodies, including analyses of returned lunar samples and remote sensing of Mars, has added an additional dimension to geochemistry. Determinations of elemental compositions of minerals and rocks, either through in situ analysis by various techniques (e.g., electron microprobe, secondary ion mass spectrometry [SIMS], synchrotron X-ray fluorescence [XRF], laser ablation) or bulk analysis (e.g., XRF, inductively coupled plasma–atomic emission spectrometry [ICP-AES], inductively coupled plasma–mass spectrometry [ICP-MS]), have become essential approaches to many geochemical studies at levels of sensitivity and spatial resolution undreamed of five decades ago. Although major-element distributions in igneous rocks have been understood at a basic level for some time, advances using major-element abundances to understand sedimentary provenance and processes have been especially noteworthy during the past half-century. The great diversity of trace elements in terms of geochemical behavior (e.g., lithophile, siderophile, etc.) has made them invaluable to many studies, providing unique constraints on redox conditions, mineral-melt and mineral-fluid reactions, and planetary differentiation. Significant advances in microanalytical techniques have markedly improved experimental determinations of trace-element partitioning among phases and in characterizing elemental distributions in rocks and minerals using two-dimensional and three-dimensional mapping. Rare earth elements, in particular, have proved to be invaluable tracers of magmatic, sedimentary, aqueous, redox, and cosmochemical processes, and siderophile trace elements form a basis for modeling many aspects of planetary accretion and early evolution. An anomalous amount of iridium at the Mesozoic-Cenozoic boundary has revolutionized our view of one of Earth's most important biologic extinctions. Isotopic variations, whether produced by stable or radiogenic isotopes, provide a third dimension to the Periodic Table of Elements , and tremendous advances in instrumentation since the early 1960s have greatly broadened this field of geochemistry. Early work outlined the stable H and O isotope fingerprints of natural waters and water-rock interactions, and stable C and S isotope studies defined the biological fractionations that occur by photosynthesis and microbial sulfate reduction, respectively, topics that have since been applied to problems relating to the evolution of life and Earth's atmosphere. Recent work on stable O isotopes has documented the likelihood that liquid water existed >4 b.y. ago on Earth, which profoundly affects our view of Earth's evolution. New work on “nontraditional” stable isotopes has investigated redox cycling over Earth's history, as has study of non-mass-dependent stable isotope variations. New approaches using stable isotopes as paleothermometers include exploiting the unique energetics of bonds between rare stable isotopes. Early work on the radiogenic Rb-Sr and U-Th-Pb isotope systems documented the key distinctions between continental crust and mantle, setting the stage for later tracing of mass fluxes via plate tectonics, as well as documenting the great antiquity of continental crust formation and mantle differentiation on Earth. The Sm-Nd and Lu-Hf isotope systems provided a temporal context for earlier studies of rare earth element variations in nature, including new constraints on crustal growth rates and mechanisms extending back earlier than 4 Ga. The siderophile Re-Os isotope system has been used to study the accretion of planetary bodies, core-mantle interaction, and the nature of the ancient lithospheric mantle. The branch of geochemistry that deals with fossilized organic molecules had its origins in elucidating the processes and pathways that led to petroleum formation. As awareness of the richness and diversity of organic compounds that can be preserved in sedimentary rocks grew, this gave way to the broader endeavor of molecular paleobiology. Despite great challenges in tying specific biomolecules to groups of organisms, or to metabolic processes, as well as issues of preservation mechanisms, molecular paleobiology remains a prime approach for studying the history of microorganisms, which have been the dominant life form for most of Earth's history and yet are rarely preserved in the fossil record. Work on molecular biomarkers has produced numerous paleoenvironmental proxies for the chemistry and redox state (euxinia, anoxic, oxic) of the ancient oceans, as well as new paleoclimate records. The biochemical diversity of relatively simple life forms, including bacteria and archaea, has provided a wealth of lipid biomarkers that inform us about the evolution of metabolisms over Earth history, including oxygenic and anoxygenic photosynthesis, methanogenesis, and methanotrophy, and these records have been tied into stable isotope variations of many individual chemical elements (C, H, N, O, S, Fe, Mo, etc.), which provide a broad view of the biogeochemical evolution and biologically catalyzed redox cycling of Earth, and, potentially, other planetary bodies. Although many geochemists focus exclusively on terrestrial problems, research over the past five decades has been intimately linked to the chemistry of other solar system bodies and the universe beyond. We routinely rely on meteorite falls, interplanetary dust particles, and Moon rocks for a baseline for comparison to Earth, which has been extensively differentiated and repeatedly resurfaced. Sophisticated remote-sensing capabilities based on past and current spacecraft missions are enabling active study of other planetary bodies such as the Moon, Mercury, and Mars. Ideas about nucleosynthesis within stars are tested by reference to the measured isotopic compositions of tiny presolar grains extracted from chondrites. Short-lived radionuclides in meteorites provide a detailed record of the condensation, mixing, and differentiation history of the earliest solar system. Mass-independent oxygen isotope fractionation in extraterrestrial samples may identify photochemical processes in the early solar nebula. More broadly, the temperature stabilities of elements and minerals constrain the sequence of nebular condensation, which provides a first-order explanation for the bulk composition of the terrestrial planets relative to the planets of the outer solar system. Organic compounds from space inform us on the delivery of complex organic molecules to the early Earth, which likely influenced the earliest organic chemistry reactions, which in turn must have affected the origin and evolution of life. Chemical characterizations of samples of the Moon from the Apollo missions have provided the key data to recognize the Moon's formation by impact of a Mars-size object with Earth and the likelihood that both bodies solidified from magma oceans. The individual subfields in geochemistry are becoming increasingly integrated, where systems are now viewed in a more holistic fashion, such as multi-element or multi-isotopic studies of biogeochemical cycles. Such approaches seem likely to continue in the future, and they offer a comprehensive way to test multiple hypotheses and address geologic questions that continue to be important as we use geochemistry to better understand the geologic history of Earth and the solar system.
ABSTRACT Mars has an extensive, long-lived sedimentary record that is complimentary to the terrestrial record, bearing both first-order similarities and first-order differences. The igneous record is composed of basaltic rocks, in fundamental contrast to the granodioritic upper continental crust of the Earth, which in turn dominates the provenance of clastic and chemical sedimentary rocks. The crust and sedimentary mass of Mars on average are older than the terrestrial records, and Mars provides exceptional potential for understanding processes that were active during the earliest history (>3.5 Gyr) of the solar system. Numerous sedimentary minerals have been identified both from orbit and by rovers/landers and include a variety of clays, sulfates, amorphous silica, minor carbonates, and possibly chlorides. The Martian sedimentary mineralogical record is Fe- and Mg-enriched and Na- and K-depleted compared to the terrestrial record, reflecting differing crustal compositions and differing aqueous surficial environments. There is evidence for three distinct sedimentary mineralogical epochs: an early clay-rich era, intermediate sulfate-rich era, and a younger era dominated by secondary iron oxides. This mineralogical evolution likely records desiccation, acidification, and oxidation of the surface over geological time. There is also evidence that surficial processes were controlled by a sulfur cycle, rather than the carbon cycle, over much of Martian geological time, leading to low-pH aqueous conditions. The nature of this S cycle changed over time as volcanic sulfur sources and amounts of near-surface water diminished. There is a linkage between the S cycle and iron/oxygen cycles related to diagenetic oxidation of iron sulfates to form iron oxides. Where studied in detail, weathering is dominated by low pH, with mobility of ferric iron being common. Lack of evidence for expected aluminum mobility indicates that low water-rock ratio conditions prevailed. In Noachian terrains, where clay minerals are common, it is more likely that aqueous conditions were closer to circum-neutral, but detailed study awaits future landed missions. Numerous depositional environments are recognized, including fluvial, deltaic, lacustrine, eolian, and glacial settings. Evaporitic rocks appear common and are characterized by distinctive suites of Mg-, Ca-, and Fe-sulfates and possibly chlorides. A system of chemical divides can be constructed and indicates that the range of observed evaporite minerals can be explained by typical water compositions derived from acidic weathering of Martian crust, and with variable initial pH controlled by HCO − 3 /SO 2− 4 ratios. Several diagenetic processes have also been identified, including complex groundwater diagenetic histories. One process, consistent with experimental studies, that explains the correlation between sulfate and iron oxide minerals seen from orbit, as well as formation of hematitic concretions in the Burns Formation on Meridiani Planum, is oxidation of iron sulfates to form iron oxides. In general, the diagenetic record that has been identified, including incomplete iron sulfate oxidation, limited clay mineral transformations, and absence of amorphous silica recrystallization, indicates highly water-limited postdepositional conditions. Among the most important outstanding questions for sedimentary geochemistry are those related to the quantification of the size and lithological distribution of the sedimentary record, the detailed history of near-surface water, and the origin and history of acidity in the aqueous environment.