- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Antarctica
-
Marie Byrd Land (1)
-
Transantarctic Mountains (1)
-
West Antarctica (1)
-
-
Asia
-
Far East
-
Philippine Islands
-
Luzon
-
Taal (1)
-
-
-
-
Middle East
-
Cyprus
-
Troodos Massif (1)
-
-
-
-
Burro Mountain (1)
-
Coast Ranges (1)
-
Pacific region (1)
-
South America
-
Andes
-
Western Cordillera (2)
-
-
Peru (3)
-
-
United States
-
California
-
Colusa County California (1)
-
Glenn County California (2)
-
Monterey County California (1)
-
Santa Barbara County California
-
Point Sal (1)
-
-
Tehama County California (1)
-
-
New England (1)
-
-
-
commodities
-
metal ores
-
copper ores (2)
-
iron ores (2)
-
polymetallic ores (1)
-
-
mineral deposits, genesis (2)
-
-
elements, isotopes
-
isotope ratios (4)
-
isotopes
-
radioactive isotopes
-
Pa-231 (1)
-
Pb-206/Pb-204 (2)
-
Pb-207/Pb-204 (2)
-
Pb-208/Pb-204 (2)
-
Ra-226 (1)
-
Re-187/Os-188 (1)
-
-
stable isotopes
-
Hf-177/Hf-176 (2)
-
O-18/O-16 (1)
-
Os-188/Os-187 (1)
-
Pb-206/Pb-204 (2)
-
Pb-207/Pb-204 (2)
-
Pb-207/Pb-206 (1)
-
Pb-208/Pb-204 (2)
-
Re-187/Os-188 (1)
-
Sr-87/Sr-86 (1)
-
-
-
metals
-
actinides
-
protactinium
-
Pa-231 (1)
-
-
-
alkaline earth metals
-
calcium (1)
-
magnesium (1)
-
radium
-
Ra-226 (1)
-
-
strontium
-
Sr-87/Sr-86 (1)
-
-
-
hafnium
-
Hf-177/Hf-176 (2)
-
-
lead
-
Pb-206/Pb-204 (2)
-
Pb-207/Pb-204 (2)
-
Pb-207/Pb-206 (1)
-
Pb-208/Pb-204 (2)
-
-
platinum group
-
iridium (1)
-
osmium
-
Os-188/Os-187 (1)
-
Re-187/Os-188 (1)
-
-
palladium (1)
-
platinum (1)
-
ruthenium (1)
-
-
rhenium
-
Re-187/Os-188 (1)
-
-
-
oxygen
-
O-18/O-16 (1)
-
-
-
geochronology methods
-
Ar/Ar (2)
-
K/Ar (2)
-
Re/Os (1)
-
U/Pb (4)
-
uranium disequilibrium (1)
-
-
geologic age
-
Cenozoic
-
Quaternary (1)
-
-
Mesozoic
-
Cretaceous
-
Lower Cretaceous (1)
-
Upper Cretaceous (2)
-
-
Franciscan Complex (2)
-
Jurassic
-
Coast Range Ophiolite (3)
-
Middle Jurassic (1)
-
-
Triassic (1)
-
-
Paleozoic
-
Devonian (1)
-
Ordovician (1)
-
Permian (1)
-
-
Precambrian
-
upper Precambrian
-
Proterozoic (1)
-
-
-
-
igneous rocks
-
igneous rocks
-
plutonic rocks
-
diorites
-
plagiogranite (1)
-
-
granites (2)
-
ultramafics
-
chromitite (1)
-
peridotites
-
harzburgite (1)
-
-
-
-
volcanic rocks
-
andesites
-
boninite (1)
-
-
basalts (2)
-
pyroclastics
-
tuff (1)
-
-
-
-
ophiolite (2)
-
-
metamorphic rocks
-
metamorphic rocks
-
amphibolites (2)
-
gneisses (1)
-
metaigneous rocks
-
serpentinite (1)
-
-
metasomatic rocks
-
serpentinite (1)
-
skarn (2)
-
-
migmatites (1)
-
mylonites (1)
-
schists
-
blueschist (1)
-
-
-
ophiolite (2)
-
-
minerals
-
oxides
-
chrome spinel (1)
-
-
silicates
-
chain silicates
-
amphibole group
-
clinoamphibole
-
hornblende (2)
-
-
-
pyroxene group (1)
-
-
framework silicates
-
feldspar group (1)
-
-
orthosilicates
-
nesosilicates
-
zircon group
-
zircon (4)
-
-
-
-
sheet silicates
-
mica group
-
biotite (1)
-
-
-
-
sulfides (1)
-
-
Primary terms
-
absolute age (7)
-
Antarctica
-
Marie Byrd Land (1)
-
Transantarctic Mountains (1)
-
West Antarctica (1)
-
-
Asia
-
Far East
-
Philippine Islands
-
Luzon
-
Taal (1)
-
-
-
-
Middle East
-
Cyprus
-
Troodos Massif (1)
-
-
-
-
Cenozoic
-
Quaternary (1)
-
-
continental drift (1)
-
crust (1)
-
economic geology (2)
-
faults (2)
-
geochemistry (5)
-
geochronology (3)
-
igneous rocks
-
plutonic rocks
-
diorites
-
plagiogranite (1)
-
-
granites (2)
-
ultramafics
-
chromitite (1)
-
peridotites
-
harzburgite (1)
-
-
-
-
volcanic rocks
-
andesites
-
boninite (1)
-
-
basalts (2)
-
pyroclastics
-
tuff (1)
-
-
-
-
intrusions (5)
-
isotopes
-
radioactive isotopes
-
Pa-231 (1)
-
Pb-206/Pb-204 (2)
-
Pb-207/Pb-204 (2)
-
Pb-208/Pb-204 (2)
-
Ra-226 (1)
-
Re-187/Os-188 (1)
-
-
stable isotopes
-
Hf-177/Hf-176 (2)
-
O-18/O-16 (1)
-
Os-188/Os-187 (1)
-
Pb-206/Pb-204 (2)
-
Pb-207/Pb-204 (2)
-
Pb-207/Pb-206 (1)
-
Pb-208/Pb-204 (2)
-
Re-187/Os-188 (1)
-
Sr-87/Sr-86 (1)
-
-
-
lava (1)
-
magmas (3)
-
mantle (2)
-
Mesozoic
-
Cretaceous
-
Lower Cretaceous (1)
-
Upper Cretaceous (2)
-
-
Franciscan Complex (2)
-
Jurassic
-
Coast Range Ophiolite (3)
-
Middle Jurassic (1)
-
-
Triassic (1)
-
-
metal ores
-
copper ores (2)
-
iron ores (2)
-
polymetallic ores (1)
-
-
metals
-
actinides
-
protactinium
-
Pa-231 (1)
-
-
-
alkaline earth metals
-
calcium (1)
-
magnesium (1)
-
radium
-
Ra-226 (1)
-
-
strontium
-
Sr-87/Sr-86 (1)
-
-
-
hafnium
-
Hf-177/Hf-176 (2)
-
-
lead
-
Pb-206/Pb-204 (2)
-
Pb-207/Pb-204 (2)
-
Pb-207/Pb-206 (1)
-
Pb-208/Pb-204 (2)
-
-
platinum group
-
iridium (1)
-
osmium
-
Os-188/Os-187 (1)
-
Re-187/Os-188 (1)
-
-
palladium (1)
-
platinum (1)
-
ruthenium (1)
-
-
rhenium
-
Re-187/Os-188 (1)
-
-
-
metamorphic rocks
-
amphibolites (2)
-
gneisses (1)
-
metaigneous rocks
-
serpentinite (1)
-
-
metasomatic rocks
-
serpentinite (1)
-
skarn (2)
-
-
migmatites (1)
-
mylonites (1)
-
schists
-
blueschist (1)
-
-
-
metamorphism (1)
-
metasomatism (1)
-
mineral deposits, genesis (2)
-
ocean floors (1)
-
orogeny (1)
-
oxygen
-
O-18/O-16 (1)
-
-
Pacific region (1)
-
Paleozoic
-
Devonian (1)
-
Ordovician (1)
-
Permian (1)
-
-
paragenesis (1)
-
plate tectonics (5)
-
Precambrian
-
upper Precambrian
-
Proterozoic (1)
-
-
-
sedimentary rocks
-
clastic rocks
-
sandstone (2)
-
-
-
sedimentation (1)
-
sediments
-
marine sediments (1)
-
-
South America
-
Andes
-
Western Cordillera (2)
-
-
Peru (3)
-
-
structural geology (1)
-
tectonics (2)
-
tectonophysics (1)
-
United States
-
California
-
Colusa County California (1)
-
Glenn County California (2)
-
Monterey County California (1)
-
Santa Barbara County California
-
Point Sal (1)
-
-
Tehama County California (1)
-
-
New England (1)
-
-
-
rock formations
-
Coastal Batholith (1)
-
-
sedimentary rocks
-
sedimentary rocks
-
clastic rocks
-
sandstone (2)
-
-
-
-
sediments
-
sediments
-
marine sediments (1)
-
-
Re−Os Isotope and PGE Abundance Systematics of Coast Range Ophiolite Peridotites and Chromitite, California: Insights into Fore-Arc Magmatic Processes
Hf- and O-isotope data from detrital and granitoid zircons reveal characteristics of the Permian–Triassic magmatic belt along the Antarctic sector of Gondwana
Serpentinite matrix mélange represents a significant, if less common, component of many accretionary complexes. There are two principal hypotheses for the origin of serpentinite mélange: (1) formation on the seafloor in a fracture zone–transform fault setting, and (2) formation within a subduction zone with mixing of rocks derived from both the upper and lower plates. The first hypothesis requires that the sheared serpentinite matrix be derived from hydrated abyssal peridotites and that the block assemblage consist exclusively of oceanic rocks (abyssal peridotites, oceanic basalts, and pelagic sediments). The second hypothesis implies that the sheared serpentinite matrix is derived from hydrated refractory peridotites with supra-subduction zone affinities, and that the block assemblage includes rocks derived from both the upper plate (forearc peridotites, arc volcanics, sediments) and the lower plate (abyssal peridotites, oceanic basalts, pelagic sediments). In either case, serpentinite mélange may include true mélange, with exotic blocks derived from other sources, and serpentinite broken formation , where the blocks are massive peridotite. The Tehama-Colusa serpentinite mélange underlies the Coast Range ophiolite in northern California and separates it from high-pressure/temperature (P/T) metamorphic rocks of the Franciscan complex. It has been interpreted both as an accreted fracture zone terrane and as a subduction-derived mélange belt. Our data show that the mélange matrix represents hydrated refractory peridotites with forearc affinities, and that blocks within the mélange consist largely of upper plate lithologies (refractory forearc harzburgite, arc volcanics, arc-derived sediments, and chert with Coast Range ophiolite biostratigraphy). Lower plate blocks within the mélange include oceanic basalts and chert with rare blueschist and amphibolite. Hornblendes from three amphibolite blocks that crop out in serpentinite mélange and sedimentary serpentinite yield 40 Ar/ 39 Ar plateau ages of 165.6–167.5 Ma, similar to published ages of high-grade blocks within the Franciscan complex and to crystallization ages in the Coast Range ophiolite. Other blocks have uncertain provenance. It has been shown that peridotite blocks within the mélange have low pyroxene equilibration temperatures that are consistent with formation in a fracture zone setting. However, the current mélange reflects largely upper-plate lithologies in both its matrix and its constituent blocks. We propose that the proto-Franciscan subduction zone nucleated on a large offset transform fault–fracture zone that evolved into a subduction zone mélange complex. Mélange matrix was formed by the hydration and volume expansion of refractory forearc peridotite, followed by subsequent shear deformation. Mélange blocks were formed largely by the breakup of upper plate crust and lithosphere, with minor offscraping and incorporation of lower plate crust. We propose that the methods discussed here can be applied to serpentinite matrix mélange worldwide in order to understand better the tectonic evolution of the orogens in which they occur.