- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Chalk Aquifer (1)
-
-
Primary terms
-
ground water (1)
-
sedimentary rocks
-
carbonate rocks
-
chalk (1)
-
-
-
-
sedimentary rocks
-
sedimentary rocks
-
carbonate rocks
-
chalk (1)
-
-
-
Differentiated influence of the double porosity of the chalk on solute and heat transport
Abstract Chalk porosity plays a decisive role in the transport of solutes and heat in saturated chalk. From a geological point of view, there are at least two types of porosity: the porosity of pores corresponding to the micro-spaces between the fossil coccoliths that form the chalk matrix and the porosity owing to the micro- and macro-fractures (i.e. secondary porosity). For groundwater flow, the fracture porosity is a determining factor at the macroscopic scale. The multiscale heterogeneity of the porous/fractured chalk induces different effects on solute and heat transport. For solute transport considered at the macroscopic scale, tracer tests have shown that the ‘effective transport porosity’ is substantially lower than the ‘effective drainable porosity’. Moreover, breakthrough curves of tracer tests show an important influence of diffusion in a large portion of the ‘immobile water’ (‘matrix diffusion’) together with rapid preferential advection through the fractures. For heat transport, the matrix diffusion in the ‘immobile water’ of the chalk is hard to distinguish from conduction within the saturated chalk.