- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Blue Mountains (1)
-
North America
-
North American Cordillera (2)
-
-
Pacific Coast (1)
-
United States
-
Idaho (2)
-
Idaho Batholith (3)
-
Lewis and Clark Lineament (1)
-
Oregon (1)
-
Yakima fold belt (1)
-
-
-
elements, isotopes
-
isotope ratios (1)
-
isotopes
-
stable isotopes
-
Sr-87/Sr-86 (1)
-
-
-
metals
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (1)
-
-
-
-
-
geochronology methods
-
Ar/Ar (2)
-
paleomagnetism (2)
-
thermochronology (1)
-
U/Pb (1)
-
-
geologic age
-
Cenozoic
-
Tertiary
-
Paleogene
-
lower Paleogene (1)
-
-
-
-
Mesozoic
-
Cretaceous
-
Middle Cretaceous (1)
-
Upper Cretaceous (1)
-
-
-
Precambrian (1)
-
-
igneous rocks
-
igneous rocks
-
plutonic rocks
-
diorites
-
tonalite (1)
-
-
-
-
-
minerals
-
silicates
-
orthosilicates
-
nesosilicates
-
zircon group
-
zircon (1)
-
-
-
-
-
-
Primary terms
-
absolute age (1)
-
Cenozoic
-
Tertiary
-
Paleogene
-
lower Paleogene (1)
-
-
-
-
crust (1)
-
deformation (1)
-
faults (1)
-
foliation (1)
-
igneous rocks
-
plutonic rocks
-
diorites
-
tonalite (1)
-
-
-
-
intrusions (1)
-
isotopes
-
stable isotopes
-
Sr-87/Sr-86 (1)
-
-
-
Mesozoic
-
Cretaceous
-
Middle Cretaceous (1)
-
Upper Cretaceous (1)
-
-
-
metals
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (1)
-
-
-
-
North America
-
North American Cordillera (2)
-
-
Pacific Coast (1)
-
paleomagnetism (2)
-
plate tectonics (1)
-
Precambrian (1)
-
tectonics (1)
-
United States
-
Idaho (2)
-
Idaho Batholith (3)
-
Lewis and Clark Lineament (1)
-
Oregon (1)
-
Yakima fold belt (1)
-
-
The jagged western edge of Laurentia: The role of inherited rifted lithospheric structure in subsequent tectonism in the Pacific Northwest
ABSTRACT The rifted Precambrian margin of western Laurentia is hypothesized to have consisted of a series of ~330°-oriented rift segments and ~060°-oriented transform segments. One difficulty with this idea is that the 87 Sr/ 86 Sr i = 0.706 isopleth, which is inferred to coincide with the trace of this rifted margin, is oriented approximately N-S along the western edge of the Idaho batholith and E-W in northern Idaho; the transition between the N-S– and E-W–oriented segments occurs near Orofino, Idaho. We present new paleomagnetic and geochronologic evidence that indicates that the area around Orofino, Idaho, has rotated ~30° clockwise since ca. 85 Ma. Consequently, we interpret the current N-S–oriented margin as originally oriented ~330°, consistent with a Precambrian rift segment, and the E-W margin as originally oriented ~060°, consistent with a transform segment. Independent geochemical and seismic evidence corroborates this interpretation of rotation of Blue Mountains terranes and adjacent Laurentian block. Left-lateral motion along the Lewis and Clark zone during Late Cretaceous–Paleogene time likely accommodated this rotation. The clockwise rotation partially explains the presence of the Columbia embayment, as Laurentian lithosphere was located further west. Restoration of the rotation results in a reconstructed Neoproterozoic margin with a distinct promontory and embayment, and it constrains the rifting direction as SW oriented. The rigid Precambrian rift-transform corner created a transpressional syntaxis during middle Cretaceous deformation associated with the western Idaho and Ahsahka shear zones. During the late Miocene to present, the Precambrian rift-transform corner has acted as a fulcrum, with the Blue Mountains terranes as the lever arm. This motion also explains the paired fan-shaped contractional deformation of the Yakima fold-and-thrust belt and fan-shaped extensional deformation in the Hells Canyon extensional province.