- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Asia
-
Himalayas (1)
-
Indian Peninsula
-
Pakistan (1)
-
-
Middle East
-
Iran (1)
-
-
-
Europe
-
Pyrenees
-
Spanish Pyrenees (1)
-
-
Southern Europe
-
Iberian Peninsula
-
Spain
-
Aragon Spain (1)
-
Spanish Pyrenees (1)
-
-
-
-
Western Europe
-
United Kingdom
-
Great Britain
-
England
-
Somerset England (1)
-
-
-
-
-
-
Makran (1)
-
Pacific Ocean
-
North Pacific
-
Northwest Pacific
-
Shatsky Rise (1)
-
-
-
West Pacific
-
Northwest Pacific
-
Shatsky Rise (1)
-
-
-
-
-
elements, isotopes
-
carbon
-
C-13/C-12 (1)
-
-
isotope ratios (1)
-
isotopes
-
stable isotopes
-
C-13/C-12 (1)
-
O-18/O-16 (1)
-
-
-
oxygen
-
O-18/O-16 (1)
-
-
-
fossils
-
Invertebrata
-
Mollusca
-
Cephalopoda
-
Ammonoidea
-
Ammonites (1)
-
-
-
-
Protista
-
Foraminifera (1)
-
-
-
microfossils (3)
-
palynomorphs (1)
-
Plantae
-
algae
-
nannofossils (2)
-
-
-
-
geochronology methods
-
fission-track dating (1)
-
paleomagnetism (1)
-
U/Pb (1)
-
-
geologic age
-
Cenozoic
-
Tertiary
-
Paleogene
-
Eocene (1)
-
Paleocene
-
lower Paleocene
-
K-T boundary (1)
-
-
-
-
-
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous
-
K-T boundary (1)
-
-
-
Jurassic
-
Lower Jurassic
-
Pliensbachian (1)
-
Toarcian
-
lower Toarcian (1)
-
-
-
-
-
-
Primary terms
-
absolute age (1)
-
Asia
-
Himalayas (1)
-
Indian Peninsula
-
Pakistan (1)
-
-
Middle East
-
Iran (1)
-
-
-
biogeography (1)
-
carbon
-
C-13/C-12 (1)
-
-
Cenozoic
-
Tertiary
-
Paleogene
-
Eocene (1)
-
Paleocene
-
lower Paleocene
-
K-T boundary (1)
-
-
-
-
-
-
Europe
-
Pyrenees
-
Spanish Pyrenees (1)
-
-
Southern Europe
-
Iberian Peninsula
-
Spain
-
Aragon Spain (1)
-
Spanish Pyrenees (1)
-
-
-
-
Western Europe
-
United Kingdom
-
Great Britain
-
England
-
Somerset England (1)
-
-
-
-
-
-
geochronology (1)
-
Invertebrata
-
Mollusca
-
Cephalopoda
-
Ammonoidea
-
Ammonites (1)
-
-
-
-
Protista
-
Foraminifera (1)
-
-
-
isotopes
-
stable isotopes
-
C-13/C-12 (1)
-
O-18/O-16 (1)
-
-
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous
-
K-T boundary (1)
-
-
-
Jurassic
-
Lower Jurassic
-
Pliensbachian (1)
-
Toarcian
-
lower Toarcian (1)
-
-
-
-
-
Ocean Drilling Program
-
Leg 198
-
ODP Site 1210 (1)
-
-
-
orogeny (1)
-
oxygen
-
O-18/O-16 (1)
-
-
Pacific Ocean
-
North Pacific
-
Northwest Pacific
-
Shatsky Rise (1)
-
-
-
West Pacific
-
Northwest Pacific
-
Shatsky Rise (1)
-
-
-
-
paleoecology (1)
-
paleomagnetism (1)
-
palynomorphs (1)
-
Plantae
-
algae
-
nannofossils (2)
-
-
-
plate tectonics (1)
-
sedimentary rocks
-
carbonate rocks (1)
-
clastic rocks
-
sandstone (1)
-
-
-
sedimentation (1)
-
tectonics
-
neotectonics (1)
-
-
-
sedimentary rocks
-
sedimentary rocks
-
carbonate rocks (1)
-
clastic rocks
-
sandstone (1)
-
-
-
Abstract This study focuses on a condensed sequence of alternating carbonate–clastic sediments of the Barrington Member, Beacon Limestone Formation (latest Pliensbachian to early Toarcian) from Somerset (SW England). Abundant ammonites confirm (apart from the absence of the Clevelandicum and Tenuicostatum ammonite subchronozones) the presence of Hawskerense Subchronozone to Fallaciosum–Bingmanni subchronozones. Well-preserved, sometimes diverse assemblages of ostracods, foraminifera, nannofossils and low-diversity dinoflagellate assemblages support the chronostratigraphic framework. Stable-isotope analyses demonstrate the presence of a carbon isotope excursion, relating to the Toarcian Oceanic Anoxic Event, within the early Toarcian. Faunal, geochemical and sedimentological evidence suggest that deposition largely took place in a relatively deep-water (subwave base), mid-outer shelf environment under a well-mixed water column. However, reduced benthic diversity, the presence of weakly laminated sediments and changes in microplankton assemblage composition within the Toarcian Oceanic Anoxic Event indicates dysoxic, but probably never anoxic, bottom-water conditions during this event. The onset of the carbon isotope excursion coincides with extinction in the nannofossils and benthos, including the disappearance of the ostracod suborder Metacopina. Faunal evidence indicates connectivity with the Mediterranean region, not previously recorded for the UK during the early Toarcian.
A revised age-model for the Eocene deep-marine siliciclastic systems, Aínsa Basin, Spanish Pyrenees
GSSPs, global stratigraphy and correlation
Abstract Procedures used to define an international chronostratigraphic stage boundary and to locate and ratify a Global Boundary Stratotype Section and Point (GSSP) are outlined. A majority of current GSSPs use biostratigraphic data as primary markers with no reference to any physico-chemical markers, despite the International Subcommission on Stratigraphic Classification (ISSC) suggestion that such markers should be included if possible. It is argued that such definitions will not produce the high-precision Phanerozoic time scale necessary to understand such phenomena as pre-Pleistocene ice ages and global climate change. It is strongly recommended that all GSSPs should have physico-chemical markers as an integral part of their guiding criteria, and where such markers cannot be found, the GSSP should be relocated. The methods and approach embodied in oceanic stratigraphy – coring, logging, analysing and archiving of drill sites by numerous experts using a wide range of methods – could usefully serve as a scientific model for the analysis and archiving of GSSPs, all of which are on the present-day continents. The incorporation of many more stratigraphic sections into GSSP studies, the application of physico-chemical methods, and the replacement of old U–Pb dates by newer CA-TIMS U–Pb dates, together with the use of constrained optimization (CONOP) programs that produce a calendar of events from many sections, should lead to much more precise timescales for pre-Cenozoic time than are currently available.